【C进阶】深度剖析数据在内存中的存储

目录

一、数据类型的介绍

1.类型的意义:

2.类型的基本分类

二、整形在内存中的存储

1.原码 反码 补码

2.大小端介绍

3.练习

三、浮点型在内存中的存储

1.一个例子

  2.浮点数存储规则


一、数据类型的介绍

前面我们已经学习了基本的内置类型以及他们所占存储空间的大小:

char          //字符数据类型

short         //短整型

int             //整形

long          //长整形

long long   //更长的整形

float           //单精度浮点型

double      //双精度浮点型

1.类型的意义:

1.使用这个类型开辟内存空间的大小(大小决定了使用的范围)

2.决定了如何看待内存空间的视角:

int 和float类型都是4个字节,但是一个是整形,一个是浮点型,看待内存空间的视角不一样

2.类型的基本分类

(1)整形家族:

char:

        unsigned char

        signed  char

short :

       unsigned short  [int]     //短整型,这个int整形可以省略

        signed  short   [int]

int :

      unsigned int

        signed  int

long :

       unsigned long [int]

        signed  long [int]

【温馨提示】:char类型也是整形家族的原因:

字符在内存中存储的是字符的ACSII码值(0-127),ASCII码值是整形,所以字符类型归类到整形家)族 

signed -有符号的:当第一位代表符号位的时候,就是有符号的

unsigned -无符号的:当每一位都是数值位,有效位的时候就是无符号的

【注意】:

当我们没有写signed和unsigned时,int,short和long类型默认就是signed有符号的

eg:当我们写出int a的默认的其实就是signed int类型

but :C语言并没有规定char是否是signed char(这个取决于编译器,大部分是signed char)


(2)浮点数家族:都可以表示小数

 float     //精度小一些,单精度

double   //精度大一些,双精度


(3)构造类型(自定义类型)

>数组类型

>结构体类型 struct

>枚举类型 enum

>联合类型 union


(4)指针类型

int *pi

char *pc

float *pf

void * pv  (无具体类型的指针)


(5) 空类型

void 表示空类型(无类型)

通常应用于函数的返回类型,函数的参数,指针类型

eg:int main(void)就表示main函数不需要参数

但是实际上main函数是有三个参数的int main(int argc,char *argv[  ],char *envp[  ]),这三个参数需要用的时候才需要写,不需要括号直接写void即可

二、整形在内存中的存储

计算机能够处理的是二进制数据,整形和浮点型在内存中也都是以二进制的形式进行存储的

1.原码 反码 补码

整形的二进制表示有三种:原码,反码,补码

正的整数:原码,反码,补码相同

负的整数:原码,反码,补码要进行计算

整数在内存中存储的是补码的二进制序列

eg:

int a = -10;//int类型占4个字节-32bit位
    10000000 00000000 00000000 00001010  原码
    11111111 11111111 11111111 11110101  反码
    1 1111111 11111111 11111111 11110110  补码(最高一位表示符号位,其他31位表示数值位)

    unsigned int b = -10;
    1 1111111 11111111 11111111 11110110  补码(32位全都表示数值位)


对于整形来说,数据存放内存中其实存放的是补码

为什么呢?

使用补码,可以将符号位和数值域统一处理;同时,加减法也可以统一处理(cpu只有加法器),此外,补码和原码相互转换,其运算过程是相同的,不需要额外的硬件电路

eg:

    1-1
    电脑转化为1+(-1)
    00000000 00000000 00000000 00000001  1的原反补码
    10000000 00000000 00000000 00000001  -1的原码
    11111111 11111111 11111111 11111110  -1的补码
    11111111 11111111 11111111 11111111  -1的补码
    如果就是简单的原码相加得到的就是-2(还会犹豫要不要加符号位)
    但是如果是补码相加得到的就是正确的结果,每个位上不断进1,最后最前面多出来一位为1直接舍弃,其他位都为0

2.大小端介绍

int a=0x11223344(根据数据的存储44位于低字节处,11位于高字节处)

大端字节序存储:

把一个数据的低位字节处的数据存放在内存的高地址处,高位字节处的数据存放在内存的低地址处

小端字节序存储:

把一个数据的低位字节处的数据存放在内存的低地址处,高位字节处的数据存放在内存的高地址处

【注意】:数据存放的时候是以字节为单位存储讨论顺序的,所以叫做大小端字节序存储

char类型不需要考虑大小端,char类型就占一个字节,没有顺序可言


为什么存在大小端字节序存储呢?

这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8 bit。但是在C语言中除了8 bit的char之外,还有16 bit的short型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式


百度笔试题:

请简述大端字节序和小端字节序的概念,设计一个程序来判断当前机器的字节序

思路:

给一个int类型的变量a:让其为1(这样十六进制简单0x 00 00 00 01),然后再通过char*一次访问一个字节,打印出来看是00还是01,从而判断大小端

代码实现:

#include<stdio.h>
int main()
{int a = 1;char* p = (char*)&a;   //要将&a(int *)强制转化为char *if (*p == 1)printf("小端\n");elseprintf("大端\n");return 0;
}

【自定义函数进行判断】:

#include<stdio.h>
int check_sys()
{int a = 1;return *(char*)&a;
}
int main()
{if(check_sys()==1)printf("小端\n");elseprintf("大端\n");return 0;
}

3.练习

<1>下面程序输出什么?

#include <stdio.h>
int main()
{
char a= -1;
signed char b=-1;
unsigned char c=-1;printf("a=%d,b=%d,c=%d",a,b,c);return 0;
}

答案:

-1 -1 255

解释:

首先-1是整数,原码:10000000 00000000 00000000 00000001

                         反码:111111111 111111111 111111111 111111110

                         补码:111111111 111111111 111111111 111111111

但是char类型只有8个比特位,所以补码存起来就是111111111,而且第一位为符号位(对于a和b)

%d是10进制的形式打印有符号的整数

那么就需要进行整形提升(无符号数高位补0,有符号数高位补符号位)(对原码整形提升)

对于a和b:整形提升后补码为111111111 111111111 111111111 111111111(也就是-1)

对于c:整形提升后补码为00000000 00000000 00000000 111111111(又因为是无符号的整形,补码和原码一样)(也就是255)


 <2>下面程序输出什么?

#include <stdio.h>
int main()
{char a = -128;printf("%u\n", a);return 0;
}

答案:

4294967168

解释:

-128的原码:10000000 00000000 00000000 10000000

           反码:111111111 111111111 111111111 011111111

           补码:111111111 111111111 111111111 10000000

存进a的补码:10000000(1为符号位)

对a进行整形提升:111111111 111111111 111111111 10000000(有符号位高位补符号位1)

%u是10进制的形式打印无符号的整数

那么打印就当a是无符号数打印,对于无符号数原反补码相同,直接算即可


 <3>下面程序输出什么?

#include <stdio.h>
int main()
{char a = 128;printf("%u\n", a);return 0;
}

答案:

4294967168

解释:

虽然signed char最大只能是127,但是还是可以赋值为128,可以自行截断

128的原码:00000000 00000000 00000000 10000000

存进a的补码:10000000(1为符号位)

对a进行整形提升:111111111 111111111 111111111 10000000(有符号位高位补符号位1)

10进制无符号形式打印


【总结】: 

signed char:-128~127

char-假设是有符号的char(1个字节=8bit) (第一位为符号位)第一列为原码

00000000   0

00000001   1

00000010   2

00000011   3

...                ...

011111111  127

10000000 -128  11111111(反) 110000000(补:多出来一位要删去)

10000001  -127  11111110           111111111

...

111111110  -2      10000001            10000010

111111111  -1      10000000            10000001

259545bbc6cc455e84e6d31bce030392.png  

假设是unsigned char:0~255

 00000000

00000001   1

00000010   2

00000011   3

...                

011111111  127

10000000  128

...

111111110  254

111111111  255

f55ff4f0670841ef97bf266f8929b3c7.png


  <4>下面程序输出什么?

int i= -20;
unsigned int j = 10;
printf("%d\n", i+j);

答案:

-10

解释:

-20:原码:10000000 00000000 00000000 00010100

         反码:111111111 111111111 111111111 11101011

         补码:111111111 111111111 111111111 11101100

10:原反补码:00000000 00000000 00000000 00001010(相加时最高位变为符号位)

补码进行相加:111111111 111111111 111111111 11110110(补码)

反码:10000000 00000000 00000000 00001001

原码:10000000 00000000 00000000 00001010(-10)


   <5>下面程序输出什么?

unsigned int i;
for(i = 9; i >= 0; i--)
{
printf("%u\n",i);
}

答案:

9到0再到4294967295,一直减小,死循环

解释:

unsigned int的范围就是>=0的,所以for循环的判断条件恒成立,类比unsigned char当0继续减小,就到了255,unsigned int也是这样的


    <6>下面程序输出什么?

int main()
{
char a[1000];
int i;
for(i=0; i<1000; i++)
{
a[i] = -1-i;
}
printf("%d",strlen(a));
return 0;
}

答案:

255

解释:

strlen是统计\0(也就是0)之前的字符个数

a[ i ]里面放的是-1,-2,-3...-128 127 ...6 5 4 3 2 1 0

一共就是128+127=255个数


     <7>下面程序输出什么?

#include <stdio.h>
unsigned char i = 0;
int main()
{
for(i = 0;i<=255;i++)
{
printf("hello world\n");
}
return 0;
}

答案:

死循环

解释:

unsigned char的范围就是0-255,for循环的条件恒成立,进入死循环


三、浮点型在内存中的存储

常见的浮点数:

3.14159

1E10(也就是1.0*10^10)

浮点数家族包括:float,double,long double类型

浮点数表示的范围:float.h中定义

1.一个例子

int main()
{
int n = 9;
float *pFloat = (float *)&n;
printf("n的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
return 0;
}

结果:

ce965ae2386e42bd865ff15d005098d2.png


  2.浮点数存储规则

任意一个二进制浮点数V可以表示成下面的形式

8e461bb8b5c646cfb73859976bcddd99.png

eg:10进制的5.5转化为二进制

101.1(小数点后面一位就是2的-1次方也就是0.5)

二进制浮点数表示也就是(-1)^0*1.011*2^2(小数点提前两位,也就是*2^2(二进制),如果是十进制就是2^10) 

得出:S=0,M=1.011,E=2


对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M

91b86202a4ac410298f2f938092a3cb4.png
对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M
 da94adf1bdbd42eb97effc98d4bd4e81.png


有效数字M的存储:

对于有效数字M,1<=M<2,在计算机内部保存M的时候,默认小数点前面一位为1,所以保存只保存小数点后面的数字,这样就节省了一位数的空间,以32位为例,虽然留给M只有23位,但是相当于保存了24位有效数字 

有效数字E的存储:

 首先E是一个为无符号数,如果E为8位,它的取值范围为0-255;如果E为11位,它的取值范围为0-2047。存入E的真实值时必须加上一个中间值,对于8位的E这个中间值为127,对于11的E,这个中间值为1023

eg:2^10的E为10,所以保存32位浮点数时,必须保存成10+127=137,即10001001

 指数E从内存中取出还可以再分成三种情况:

(1)E不全为0或不全为1:

指数E的计算值减去127(或1023),得到真实值,再将M小数点前面的1补上

eg:

0.5的二进制为0.1,浮点数表示:1.0*2^(-1),E存储为-1+127=126,也就是01111110,而尾数1.0去除1就是0,那么0.5的二进制表示形式就是:

0 01111110 00000000000000000000000

(2)E全为0:

这时浮点数的指数E等于1-127(或者1-1023)即为真实值

M这时也不需要加上小数点前面的1,而是还原成0.xxxx的小数,这样做是为了表示正负0,以及接近于0的很小的数

(3)E全为1:

这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s)


 现在再来解释一下前面的例子:

从int类型的9来看:

int n=9;

00000000 00000000 00000000 00001001(int类型二进制)

但是当它强制类型转化为float*时,代表的含义就不一样了

0 00000000 00000000000000000001001

这时的E为全0,那么E=-126,M也不用补0,即M=0.00000000000000000001001,S=0

那么*pFloat也就是(-1)^0*0.00000000000000000001001*2^(-126),这个数是极其小的,打印出来就直接是0.000000(float打印小数点后6位)

从float类型的9.0来看:(当*pFloat=9.0以后)

9.0(1001.0)

浮点型表示形式:(-1)^0*1.001*2^3

二进制表示:0 10000010 00100000000000000000

然后%d形式打印:n的视角看这是补码,符号位是0,为正数,原反补码相同,转化为10进制也就是1091567616


本次内容就到此啦,欢迎评论区或者私信交流,觉得笔者写的还可以,或者自己有些许收获的,麻烦铁汁们动动小手,给俺来个一键三连,万分感谢 ! 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/59582.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

WebRTC之FEC前向纠错协议

FEC前向纠错用于丢包恢复&#xff0c;对媒体包进行异或或其他算法生成冗余包进行发送。如果接收端出现丢包&#xff0c;可以通过冗余包恢复出原始的媒体包。FEC的代价是增加码率带宽&#xff0c;所以一般会根据网络状况、丢包率来动态调整FEC冗余系数&#xff0c;也会结合NACK/…

无涯教程-Android - 环境设置

您可以从Oracle的Java网站下载最新版本的Java JDK-Java SE下载&#xff0c;您将在下载的文件中找到有关安装JDK的说明,按照给定的说明安装和配置安装程序。最后,将PATH和JAVA_HOME环境变量设置为引用包含 java 和 javac 的目录,通常分别是java_install_dir/bin和java_install_d…

D-Link DCS 密码泄露漏洞

0x01 前言 本次测试仅供学习使用&#xff0c;如若非法他用&#xff0c;与本文作者无关&#xff0c;需自行负责&#xff01;&#xff01;&#xff01; 0x02 漏洞描述 D-link DCS是一款成像色彩为彩色 是一款网络摄像机。D-link DCS系统存在密码泄露漏洞&#xff0c;攻击者通过…

C语言每日一练-----Day(4)

本专栏为c语言练习专栏&#xff0c;适合刚刚学完c语言的初学者。本专栏每天会不定时更新&#xff0c;通过每天练习&#xff0c;进一步对c语言的重难点知识进行更深入的学习。 今日练习题关键字&#xff1a;记负均正    旋转数组的最小数字    二分查找 &#x1f493;博主…

Next.js基础语法

Next.js 目录结构 入口App组件&#xff08;_app.tsx&#xff09; _app.tsx是项目的入口组件&#xff0c;主要作用&#xff1a; 可以扩展自定义的布局&#xff08;Layout&#xff09;引入全局的样式文件引入Redux状态管理引入主题组件等等全局监听客户端路由的切换 ts.config…

iOS开发Swift-2-图片视图、App图标-赏月App

1.创建新项目 点击File - New - Project。 选择Single View App&#xff0c;点击Next。 填写文件信息&#xff0c;点击Next。 选择文件位置&#xff0c;点击Create。 修改App显示名称为 “赏月”。 2.设置背景色 选择Main&#xff0c;点击View界面&#xff0c;选择右边属性&…

用docker-compose搭建LNMP

docker-compose搭建LNMP 一、compose 的部署1.Docker Compose 环境安装 二、编写Docker Compose1.准备依赖文件,配置nginx2.配置mysql3.配置php4.编写docker-compose.yml5.执行6.查看 一、compose 的部署 &#xff08;1&#xff09;公司在实际的生产环境中&#xff0c;需要使用…

Cesium 加载 geojson 文件并对文件中的属性值进行颜色设置

文章目录 需求分析解决 需求 Cesium 加载 geojson 文件并对文件中的属性值进行颜色设置 分析 在搜寻多种解决方案后&#xff0c;最后总结出 自己的解决方案 方案一&#xff0c;没看懂 var geojsonOptions {clampToGround : true //使数据贴地};var entities;promise Cesium…

uniapp 支持图片放大

<view class"list" v-for"(item, index) in urls" :key"index"><image :src"item" click"viewImg(item, index)" disabled></image></view> js // 预览大图 viewImg(data, index) {uni.previewImag…

Java【手撕滑动窗口】LeetCode 209. “长度最小子数组“, 图文详解思路分析 + 代码

文章目录 前言一、长度最小子数组1, 题目2, 思路分析3, 代码 前言 各位读者好, 我是小陈, 这是我的个人主页, 希望我的专栏能够帮助到你: &#x1f4d5; JavaSE基础: 基础语法, 类和对象, 封装继承多态, 接口, 综合小练习图书管理系统等 &#x1f4d7; Java数据结构: 顺序表, 链…

React入门 组件学习笔记

项目页面以组件形式层层搭起来&#xff0c;组件提高复用性&#xff0c;可维护性 目录 一、函数组件 二、类组件 三、 组件的事件绑定 四、获取事件对象 五、事件绑定传递额外参数 六、组件状态 初始化状态 读取状态 修改状态 七、组件-状态修改counter案例 八、this问…

mysql 间隙锁原理深度详解

目录 一、前言 二、mysql之mvcc 2.1 什么是mvcc 2.2 mvcc组成 2.2.1 Undo log 多版本链 2.2.2 ReadView 2.2.3 快照读与当前读 三、RR级别下的事务问题 3.1 RR隔离级别解决的问题 3.1.1 幻读问题 3.2 幻读效果演示 3.2.1 准备测试表和数据 3.2.2 修改事务级别 3.…

Acwing798.差分矩阵

前缀和与差分 图文并茂 超详细整理&#xff08;全网最通俗易懂&#xff09;_前缀和差分_林小鹿的博客-CSDN博客 代码展示&#xff1a; #include<iostream> #include<cstdio> using namespace std; const int N 1e3 10; int a[N][N], b[N][N]; void insert(int x…

【UE 材质】实现角度渐变材质、棋盘纹理材质

目标 步骤 一、角度渐变材质 1. 首先通过“Mask”节点将"Texture Coordinate" 节点的R、G通道分离 2. 通过“RemapValueRange”节点将0~1范围映射到-1~1 可以看到此时R通道效果&#xff1a; G通道效果&#xff1a; 继续补充如下节点 二、棋盘纹理材质 原视频链接&…

git分支管理策略

git的基础操作以及常用命令在上篇博客哦~ git原理与基本使用 1.分支管理 1.主分支 在版本回退⾥&#xff0c;我们已经知道&#xff0c;每次提交&#xff0c;Git都把它们串成⼀条时间线&#xff0c;这条时间线就可以理解为是⼀个分⽀。截⽌到⽬前&#xff0c;只有⼀条时间线&…

Docker原理详细剖析-Namespace

一、简介 docker容器技术从2013年开始火了以后&#xff0c;2014年左右当时有幸在学校能和学院教授一起做些项目以及学习。其中docker技术在当时来说还算是比较新的技术&#xff0c;国内关于这块的资料以及使用也才刚刚开始&#xff0c;讨论docker技术&#xff0c;算是相对时髦的…

【办公自动化】使用Python批量处理Excel文件并转为csv文件

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…

Hbase文档--架构体系

阿丹&#xff1a; 基础概念了解之后了解目标知识的架构体系&#xff0c;就能事半功倍。 架构体系 关键组件介绍&#xff1a; HBase – Hadoop Database&#xff0c;是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统&#xff0c;利用HBase技术可在廉价PC Server上搭建起…

WordArt Designer:基于用户驱动与大语言模型的艺术字生成

AIGC推荐 FaceChain人物写真开源项目&#xff0c;支持风格与穿着自定义&#xff0c;登顶github趋势榜首&#xff01; 前言 本文介绍了一个基于用户驱动&#xff0c;依赖于大型语言模型(LLMs)的艺术字生成框架&#xff0c;WordArt Designer。 该系统包含四个关键模块:LLM引擎、…

19.CSS雨云动画特效

效果 源码 <!DOCTYPE html> <html lang="en"> <head><meta charset="UTF-8"><title>Cloud & Rain Animation</title><link rel="stylesheet" href="style.css"> </head> <bo…