[足式机器人]Part2 Dr. CAN学习笔记-Ch01自动控制原理

本文仅供学习使用
本文参考:
B站:DR_CAN

Dr. CAN学习笔记-Ch01自动控制原理

  • 1. 开环系统与闭环系统Open/Closed Loop System
    • 1.1 EG1: 烧水与控温水壶
    • 1.2 EG2: 蓄水与最终水位
    • 1.3 闭环控制系统
  • 2. 稳定性分析Stability
    • 2.1 序言
    • 2.2 稳定的分类
    • 2.3 稳定的对象
    • 2.4 稳定的系统
    • 2.5 系统稳定性的讨论
    • 2.6 补充内容——Transfer Function(传递函数) - nonzero Initial Condition(非零初始条件)
  • 3. 燃烧卡路里-系统分析实例
    • 3.1 数学模型
    • 3.2 比例控制 Proprotional Control
  • 4 终值定理和稳态误差Final Value Theorem & Steady State Error
  • 5 比例积分控制器Proportional-Intefral Controller
  • 6 根轨迹Root locus
    • 6.1 根的作用
    • 6.2 手绘技巧
    • 6.3 分离点/汇合点&根轨迹的几何性质
  • 7 Lead Compensator超前补偿器(调节根轨迹)
    • 7.1 Plot Rootlocus 绘制根轨迹
    • 7.2 System Performance 系统表现
    • 7.3 改善/加快收敛速度
    • 7.4 超前补偿器 Lead Comperastor
  • 8 Lag Compensator滞后补偿器
  • 9 PID控制器
  • 10 奈奎斯特稳定性判据-Nyquist Stability Criterion


1. 开环系统与闭环系统Open/Closed Loop System

1.1 EG1: 烧水与控温水壶

在这里插入图片描述

1.2 EG2: 蓄水与最终水位

在这里插入图片描述

h ˙ = q i n A − g h A R \dot{h}=\frac{q_{in}}{A}-\frac{gh}{AR} h˙=AqinARgh
A = 1 A=1 A=1. 目标: h = x → x d h=x\rightarrow x_d h=xxd —— 保持液面高度
x d = C R g , C = x d g R = u , G ( s ) = 1 S + g R x_d=\frac{CR}{g},C=\frac{x_dg}{R}=u,G\left( s \right) =\frac{1}{S+\frac{g}{R}} xd=gCR,C=Rxdg=u,G(s)=S+Rg1

1.3 闭环控制系统

在这里插入图片描述
X = D G 1 + H D G V X=\frac{DG}{1+HDG}V X=1+HDGDGV

2. 稳定性分析Stability

2.1 序言

在这里插入图片描述

2.2 稳定的分类

在这里插入图片描述

2.3 稳定的对象

明确分析对象
在这里插入图片描述
e = T a r g e t − θ e=Target\,\,-\,\,\theta e=Targetθ
Does the error converge to zero or not —— error dynamics stable or not

2.4 稳定的系统

Open loop 开环
在这里插入图片描述
Closed loop 闭环
在这里插入图片描述
EG1:
在这里插入图片描述
EG2:
在这里插入图片描述

2.5 系统稳定性的讨论

在这里插入图片描述
在这里插入图片描述

2.6 补充内容——Transfer Function(传递函数) - nonzero Initial Condition(非零初始条件)

在这里插入图片描述

3. 燃烧卡路里-系统分析实例

3.1 数学模型

在这里插入图片描述
在这里插入图片描述

3.2 比例控制 Proprotional Control

在这里插入图片描述
在这里插入图片描述

4 终值定理和稳态误差Final Value Theorem & Steady State Error

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5 比例积分控制器Proportional-Intefral Controller

消除稳态误差——设计新的控制器
在这里插入图片描述

在这里插入图片描述

6 根轨迹Root locus

6.1 根的作用

G ( s ) = s + 3 s 2 + 2 s + 4 G\left( s \right) =\frac{s+3}{s^2+2s+4} G(s)=s2+2s+4s+3
Matlab可绘制 riocus(g)
掌握根的变化规律 , 设计控制器,补偿器 : Compentator Lead Lag…

根 —— 极点

  1. 一阶系统
    在这里插入图片描述
  2. 二阶系统
    在这里插入图片描述
    在这里插入图片描述
  3. 三阶系统
    在这里插入图片描述

在这里插入图片描述

6.2 手绘技巧

Matlab可以精确绘制——手绘——掌握根的变化规律——设计控制器

根轨迹的基本形式

在这里插入图片描述
根轨迹研究的是: 当 K K K从0到 + ∞ +\infty +时,闭环系统根(极点)位置的变化规律

1 + K G ( s ) = 0 , G ( s ) = N ( s ) D ( s ) = ( s − z 1 ) ( s − z 2 ) ⋯ ( s − z m ) ( s − p 1 ) ( s − p 2 ) ⋯ ( s − p n ) 1+KG\left( s \right) =0,G\left( s \right) =\frac{N\left( s \right)}{D\left( s \right)}=\frac{\left( s-z_1 \right) \left( s-z_2 \right) \cdots \left( s-z_{\mathrm{m}} \right)}{\left( s-p_1 \right) \left( s-p_2 \right) \cdots \left( s-p_{\mathrm{n}} \right)} 1+KG(s)=0,G(s)=D(s)N(s)=(sp1)(sp2)(spn)(sz1)(sz2)(szm)

其中, z 1 ⋯ z m z_1\cdots z_{\mathrm{m}} z1zm零点 Zeros ⊙ \odot p 1 ⋯ p n p_1\cdots p_{\mathrm{n}} p1pn极点 Poles × \times ×

规则1 :共有 n n n条根轨迹, 若 n > m n>m n>m;共有 m m m条根轨迹,若 m > n m>n m>n ⇐ max ⁡ { m , n } \Leftarrow \max \left\{ m,n \right\} max{m,n}
规则2 :若 m = n m=n m=n,随着 K K K 0 → ∞ 0\rightarrow \infty 0 , 根轨迹从 G ( s ) G\left( s \right) G(s)的极点向零点移动: 1 + K G ( s ) = 0 ⇒ D ( s ) + K N ( s ) = 0 1+KG\left( s \right) =0\Rightarrow D\left( s \right) +KN\left( s \right) =0 1+KG(s)=0D(s)+KN(s)=0 K → 0 K\rightarrow 0 K0 D ( s ) = 0 D\left( s \right) =0 D(s)=0(极点); K → ∞ K\rightarrow \infty K N ( s ) = 0 N\left( s \right) =0 N(s)=0 (零点)
规则3:实轴上的根轨迹存在于从右向左第奇数个极点/零点的左边
规则4:若附属跟存在,则一定是共轭的,所以根轨迹通过实轴对称
规则5:若 n > m n>m n>m , 则有 n − m n-m nm个极点指向无穷;若 m > n m>n m>n , 则有 m − n m-n mn条根轨迹从无穷指向零点
规则6:根轨迹延渐近线移动,渐近线与实轴的交点 σ = ∑ p − ∑ z n − m \sigma =\frac{\sum{p}-\sum{z}}{n-m} σ=nmpz渐近线与实轴的夹角 θ = 2 q + 1 n − m π , q = 0 , 1 , . . . , n − m − 1 / m − n − 1 \theta =\frac{2q+1}{n-m}\pi ,q=0,1,...,n-m-1/m-n-1 θ=nm2q+1π,q=0,1,...,nm1/mn1
在这里插入图片描述

6.3 分离点/汇合点&根轨迹的几何性质

以 2nd-order system 为例:
在这里插入图片描述
Properties of Root locus
在这里插入图片描述

7 Lead Compensator超前补偿器(调节根轨迹)

在这里插入图片描述

7.1 Plot Rootlocus 绘制根轨迹

G ( s ) = 1 s ( s + 2 ) G\left( s \right) =\frac{1}{s\left( s+2 \right)} G(s)=s(s+2)1
在这里插入图片描述

7.2 System Performance 系统表现

输入Input —— δ ( t ) \delta \left( t \right) δ(t) 单位冲激

  • K K K 较小时, p 1 , p 2 p_1,p_2 p1,p2 x ( t ) = c 1 e p 1 t + c 2 e p 2 t , p 1 < 0 , p 2 < 0 x\left( t \right) =c_1e^{p_1t}+c_2e^{p_2t},p_1<0,p_2<0 x(t)=c1ep1t+c2ep2t,p1<0,p2<0
    在这里插入图片描述
  • K K K 较大时,根在复平面: p 1 , p 2 p_1,p_2 p1,p2 x ( t ) = c e − t sin ⁡ ω n t x\left( t \right) =ce^{-t}\sin \omega _{\mathrm{n}}t x(t)=cetsinωnt - 无论如何改变 K K K值,都无法改变收敛速度
    -在这里插入图片描述

7.3 改善/加快收敛速度

——改变根轨迹,希望根在 − 2 + 2 3 -2+2\sqrt{3} 2+23
G ( s ) = 1 s ( s + 2 ) G\left( s \right) =\frac{1}{s\left( s+2 \right)} G(s)=s(s+2)1
在根轨迹上的点满足: ∠ K G ( s ) = − π \angle KG\left( s \right) =-\pi KG(s)=π (零点到根的夹角和 - 极点到根的夹角和)
在这里插入图片描述

7.4 超前补偿器 Lead Comperastor

H ( s ) = s − z s − p , ∥ z ∥ < ∥ p ∥ H\left( s \right) =\frac{s-z}{s-p},\left\| z \right\| <\left\| p \right\| H(s)=spsz,z<p
在这里插入图片描述

8 Lag Compensator滞后补偿器

稳态误差入手(steady state Error)
在这里插入图片描述
误差 Error E ( s ) = R ( s ) − X ( s ) = R ( s ) − E ( s ) ⋅ K G ( s ) ⇒ E ( s ) ( 1 + K G ( s ) ) = R ( s ) ⇒ E ( s ) = 1 1 + K G ( s ) R ( s ) = R ( s ) 1 1 + K N ( s ) D ( s ) = 1 s 1 1 + K N ( s ) D ( s ) E\left( s \right) =R\left( s \right) -X\left( s \right) =R\left( s \right) -E\left( s \right) \cdot KG\left( s \right) \Rightarrow E\left( s \right) \left( 1+KG\left( s \right) \right) =R\left( s \right) \Rightarrow E\left( s \right) =\frac{1}{1+KG\left( s \right)}R\left( s \right) =R\left( s \right) \frac{1}{1+K\frac{N\left( s \right)}{D\left( s \right)}}=\frac{1}{s}\frac{1}{1+K\frac{N\left( s \right)}{D\left( s \right)}} E(s)=R(s)X(s)=R(s)E(s)KG(s)E(s)(1+KG(s))=R(s)E(s)=1+KG(s)1R(s)=R(s)1+KD(s)N(s)1=s11+KD(s)N(s)1

单位阶跃unit step R ( s ) = 1 s R\left( s \right) =\frac{1}{s} R(s)=s1
稳态误差Steady State Error——FVT终值定理
e s s = lim ⁡ t → ∞ e ( t ) = lim ⁡ s → o s E ( s ) = lim ⁡ s → o s ⋅ 1 s 1 1 + K N ( s ) D ( s ) = 1 1 + K N ( 0 ) D ( 0 ) = D ( 0 ) D ( 0 ) + K N ( 0 ) ess=\underset{t\rightarrow \infty}{\lim}e\left( t \right) =\underset{s\rightarrow o}{\lim}sE\left( s \right) =\underset{s\rightarrow o}{\lim}s\cdot \frac{1}{s}\frac{1}{1+K\frac{N\left( s \right)}{D\left( s \right)}}=\frac{1}{1+K\frac{N\left( 0 \right)}{D\left( 0 \right)}}=\frac{D\left( 0 \right)}{D\left( 0 \right) +KN\left( 0 \right)} ess=tlime(t)=solimsE(s)=solimss11+KD(s)N(s)1=1+KD(0)N(0)1=D(0)+KN(0)D(0)

在这里插入图片描述
在这里插入图片描述

9 PID控制器

P —— Proportional
I —— Integral
D —— Derivative

  • 当前误差/过去误差/误差的变化趋势
    在这里插入图片描述
  1. K p ⋅ e K_{\mathrm{p}}\cdot e Kpe:比例增益——当前误差
  2. K I ⋅ ∫ e d t K_{\mathrm{I}}\cdot \int{e}dt KIedt:积分增益——过去误差-积累
  3. K D ⋅ d e d t K_{\mathrm{D}}\cdot \frac{\mathrm{d}e}{\mathrm{d}t} KDdtde :微分增益——变化趋势 (对噪音敏感)
    L [ u ] = L [ K P ⋅ e + K I ⋅ ∫ e d t + K D ⋅ d e d t ] ⇒ U ( s ) = ( K P + K I 1 s + K D s ) ⋅ E ( s ) \mathcal{L} \left[ u \right] =\mathcal{L} \left[ K_{\mathrm{P}}\cdot e+K_{\mathrm{I}}\cdot \int{e}\mathrm{d}t+K_{\mathrm{D}}\cdot \frac{\mathrm{d}e}{\mathrm{d}t} \right] \Rightarrow U\left( s \right) =\left( K_{\mathrm{P}}+K_{\mathrm{I}}\frac{1}{s}+K_{\mathrm{D}}s \right) \cdot E\left( s \right) L[u]=L[KPe+KIedt+KDdtde]U(s)=(KP+KIs1+KDs)E(s)

PID
PD控制:提高稳定性,改善瞬态
PI控制:改善稳态误差

10 奈奎斯特稳定性判据-Nyquist Stability Criterion

在这里插入图片描述

在这里插入图片描述
Cauchy’s Argument Priciple 柯西幅角原理
在这里插入图片描述

结论: s s s平面内顺时针画一条闭合曲线 A A A B B B曲线是 A A A通过 F ( s ) F(s) F(s)后在 F ( s ) F(s) F(s)平面上的映射, A A A曲线每包含一个 F ( s ) F(s) F(s)的零点(极点), B B B曲线就绕 ( 0 , 0 ) (0,0) (0,0)点顺时针(逆时针)一圈

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/595425.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【PTA-C语言】编程练习5 - 函数与指针

如果代码存在问题&#xff0c;麻烦大家指正 ~ ~有帮助麻烦点个赞 ~ ~ 编程练习5 - 函数与指针 6-1 求实数和的函数&#xff08;分数 10&#xff09;6-2 求解一元二次方程实根的函数&#xff08;分数 10&#xff09;6-3 求集合数据的均方差&#xff08;分数 10&#xff09;6-4 计…

天融信TOPSEC Cookie 远程命令执行漏洞

产品介绍 天融信TopSec 安全管理系统&#xff0c;是基于大数据架构&#xff0c;采用多种技术手段收集各类探针设备安全数据&#xff0c;围绕资产、漏洞、攻击、威胁等安全要素进行全面分析&#xff0c;提供统一监测告警、集中策略管控、协同处置流程&#xff0c;实现客户等保合…

FindMy技术用于鼠标

鼠标是计算机的标准配置之一&#xff0c;其设计初衷是为了使计算机的操作更加简便快捷&#xff0c;减少用户在操作中的负担。用户可以通过移动鼠标&#xff0c;实现光标的精确移动&#xff0c;进而选择、拖拽、复制、粘贴等操作。这种操作方式&#xff0c;使得计算机的操作变得…

人工智能未来发展前景怎么样?

人工智能的未来发展前景怎么样&#xff1f;人工智能的未来发展前景非常广阔&#xff0c;有以下几个方面的发展趋势和前景&#xff1a; 1、人工智能的未来发展前景-应用领域扩展&#xff1a;人工智能将在各个领域得到广泛应用&#xff0c;包括医疗保健、金融、交通、制造业、农业…

<软考高项备考>《论文专题 - 45 范围管理(4) 》

5 过程4-创建WBS 5.1 问题 4W1H过程做什么把项目可交付成果和项目工作分解成较小、更易于管理的组件的过程作用&#xff1a;为所要交付的内容提供0架构为什么做WBS代表着项目范围说明书所规定的工作&#xff0c;可以针对WBS 的工作包安排进度&#xff0c;估算成本和实施监控谁…

java SSM体育器材租借管理系统myeclipse开发mysql数据库springMVC模式java编程计算机网页设计

一、源码特点 java SSM体育器材租借管理系统是一套完善的web设计系统&#xff08;系统采用SSM框架进行设计开发&#xff0c;springspringMVCmybatis&#xff09;&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要…

海外服务器2核2G/4G/8G和4核8G配置16M公网带宽优惠价格表

腾讯云海外服务器租用优惠价格表&#xff0c;2核2G10M带宽、2核4G12M、2核8G14M、4核8G16M配置可选&#xff0c;可以选择Linux操作系统或Linux系统&#xff0c;相比较Linux服务器价格要更优惠一些&#xff0c;腾讯云服务器网txyfwq.com分享腾讯云国外服务器租用配置报价&#x…

GZ075 云计算应用赛题第5套

2023年全国职业院校技能大赛&#xff08;高职组&#xff09; “云计算应用”赛项赛卷5 某企业根据自身业务需求&#xff0c;实施数字化转型&#xff0c;规划和建设数字化平台&#xff0c;平台聚焦“DevOps开发运维一体化”和“数据驱动产品开发”&#xff0c;拟采用开源OpenSt…

17|回调函数:在AI应用中引入异步通信机制

17&#xff5c;回调函数&#xff1a;在AI应用中引入异步通信机制 回调函数和异步编程 回调函数&#xff0c;你可能并不陌生。它是函数 A 作为参数传给另一个函数 B&#xff0c;然后在函数 B 内部执行函数 A。当函数 B 完成某些操作后&#xff0c;会调用&#xff08;即“回调”…

如何对APP进行安全加固

引言 如今&#xff0c;移动应用市场蓬勃发展&#xff0c;APP数量呈现爆炸性增长。随着5G技术的广泛应用&#xff0c;APP的增长趋势持续增强。然而&#xff0c;由于APP的泛滥&#xff0c;网络攻击者的目标也在逐渐转移&#xff0c;数亿的移动互联网用户面临着病毒攻击的威胁&am…

计算机毕业设计——SpringBoot 房屋销售租赁平台 房屋购物网站(附源码)

1&#xff0c;绪论 1.1 背景调研 在房地产行业持续火热的当今环境下&#xff0c;房地产行业和互联网行业协同发展&#xff0c;互相促进融合已经成为一种趋势和潮流。本项目实现了在线房产平台的功能&#xff0c;多种技术的灵活运用使得项目具备很好的用户体验感。 这个项目的…

杨中科 ASP.NET MVC

ASP.NET Core 入门 什么是ASP.NET CORE 1、ASP.NET Core是.NET中做Web开发的框架 2、ASP.NET Core MVC 传统MVC项目&#xff0c;前后端都做在一起 3、ASP.NET Core Web API: 前后端分离、多端开发。(是属于MVC中的一部分) 4、ASPNET Core MVC其实包含Web API&#xff0c;不过…

未来十年不变的AI是什么?吴恩达等专家关于2024年AI发展趋势的预测

随着2024年的到来&#xff0c;人工智能领域正迎来前所未有的变革和发展。从深度学习到自然语言处理&#xff0c;AI技术的每一个分支都在经历着快速的进步。在这个关键的时刻&#xff0c;业界专家们提出了对未来趋势的深刻洞察&#xff0c;预测了将形成AI发展主流的关键方向。智…

雍禾医疗以患者为中心 雍禾植发医生文志清专注做精每一台手术

随着生活方式的改变&#xff0c;晚睡、长期使用电子产品等原因让脱发成为消费者不可忽视的问题。有相关数据显示&#xff0c;76%消费者关注自己的头皮健康状况&#xff0c;53%的人群受到脱发困扰&#xff0c;已经有20%消费者认识到专业毛发医疗机构的重要性&#xff0c;选择到专…

V8R6小版本升级步骤(单机环境)

在KingbaseES V8R6版本提供了sys_upgrade的升级工具。 sys_upgade介绍 sys_upgrade实现KingbaseES服务器实例版本升级。 sys_upgrade 允许将存储在KingbaseES数据文件中的数据升级到一个更高的KingbaseES主版本&#xff0c;而无需进行主版本升级(例如从 V8R6C4 到 V8R6C5)通常…

STL——vector详解

目录 &#x1f4a1;基本概念 &#x1f4a1;存放内置数据类型 &#x1f4a1;存放自定义数据类型 &#x1f4a1;存放自定义数据类型指针 &#x1f4a1;vector容器嵌套容器 &#x1f4a1;vector构造函数 &#x1f4a1;vector赋值操作 &#x1f4a1;vector容量和大小 &…

西电期末1018.logistic方程

一.题目 二.分析与思路 根据题目递归即可&#xff0c;用while函数判断是否到达1000项&#xff0c;内部用abs函数&#xff08;绝对值函数&#xff09;判断是否收敛&#xff0c;最后按照结果输出即可。 三.代码实现 #include<bits/stdc.h>//万能头 int main() {double …

React实现简单登录

一 实现效果(样式是之前设置的&#xff09; 二 具体实现代码 2.1 Login.js import {useNavigate} from "react-router-dom"; import React from "react"; // import ./style2.cssfunction Login(){const navigateuseNavigate()func…

nginx在国产服务器上stream配置项无法识别的问题

最近在搭建k8sranchar&#xff0c;需要用到nginx做负载均衡&#xff0c;之前在系统中也会用到&#xff0c;之前一直使用http选项&#xff0c;做转发配置。 基本格式如下图所示&#xff1a; 但是在ranchar的安装中默认方式使用stream配置项。 使用yum默认安装的nginx不支持该关…

Yapi安装配置(CentOs)

环境要求 nodejs&#xff08;7.6) mongodb&#xff08;2.6&#xff09; git 准备工作 清除yum命令缓存 sudo yum clean all卸载低版本nodejs yum remove nodejs npm -y安装nodejs,获取资源,安装高版本nodejs curl -sL https://rpm.nodesource.com/setup_8.x | bash - #安装 s…