计算机竞赛 基于GRU的 电影评论情感分析 - python 深度学习 情感分类

文章目录

  • 1 前言
    • 1.1 项目介绍
  • 2 情感分类介绍
  • 3 数据集
  • 4 实现
    • 4.1 数据预处理
    • 4.2 构建网络
    • 4.3 训练模型
    • 4.4 模型评估
    • 4.5 模型预测
  • 5 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于GRU的 电影评论情感分析

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1.1 项目介绍

其实,很明显这个项目和微博谣言检测是一样的,也是个二分类的问题,因此,我们可以用到学长之前提到的各种方法,即:

朴素贝叶斯或者逻辑回归以及支持向量机都可以解决这个问题。

另外在深度学习中,我们可以用CNN-Text或者RNN以及LSTM等模型最好。

当然在构建网络中也相对简单,相对而言,LSTM就比较复杂了,为了让不同层次的同学们可以接受,学长就用了相对简单的GRU模型。

如果大家想了解LSTM。以后,学长会给大家详细介绍。

2 情感分类介绍

其实情感分析在自然语言处理中,情感分析一般指判断一段文本所表达的情绪状态,属于文本分类问题。一般而言:情绪类别:正面/负面。当然,这就是为什么本人在前面提到情感分析实际上也是二分类问题的原因。

3 数据集

学长本次使用的是非常典型的IMDB数据集。

该数据集包含来自互联网的50000条严重两极分化的评论,该数据被分为用于训练的25000条评论和用于测试的25000条评论,训练集和测试集都包含50%的正面评价和50%的负面评价。该数据集已经经过预处理:评论(单词序列)已经被转换为整数序列,其中每个整数代表字典中的某个单词。

查看其数据集的文件夹:这是train和test文件夹。

在这里插入图片描述

接下来就是以train文件夹介绍里面的内容
在这里插入图片描述

然后就是以neg文件夹介绍里面的内容,里面会有若干的text文件:
在这里插入图片描述

4 实现

4.1 数据预处理

#导入必要的包import zipfileimport osimport ioimport randomimport jsonimport matplotlib.pyplot as pltimport numpy as npimport paddleimport paddle.fluid as fluidfrom paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear, Embeddingfrom paddle.fluid.dygraph.base import to_variablefrom paddle.fluid.dygraph import GRUUnitimport paddle.dataset.imdb as imdb#加载字典def load_vocab():vocab = imdb.word_dict()return vocab#定义数据生成器class SentaProcessor(object):def __init__(self):self.vocab = load_vocab()def data_generator(self, batch_size, phase='train'):if phase == "train":return paddle.batch(paddle.reader.shuffle(imdb.train(self.vocab),25000), batch_size, drop_last=True)elif phase == "eval":return paddle.batch(imdb.test(self.vocab), batch_size,drop_last=True)else:raise ValueError("Unknown phase, which should be in ['train', 'eval']")

步骤

  1. 首先导入必要的第三方库

  2. 接下来就是数据预处理,需要注意的是:数据是以数据标签的方式表示一个句子,因此,每个句子都是以一串整数来表示的,每个数字都是对应一个单词。当然,数据集就会有一个数据集字典,这个字典是训练数据中出现单词对应的数字标签。

4.2 构建网络

这次的GRU模型分为以下的几个步骤

  • 定义网络
  • 定义损失函数
  • 定义优化算法

具体实现如下


#定义动态GRU
class DynamicGRU(fluid.dygraph.Layer):
def init(self,
size,
param_attr=None,
bias_attr=None,
is_reverse=False,
gate_activation=‘sigmoid’,
candidate_activation=‘relu’,
h_0=None,
origin_mode=False,
):
super(DynamicGRU, self).init()
self.gru_unit = GRUUnit(
size * 3,
param_attr=param_attr,
bias_attr=bias_attr,
activation=candidate_activation,
gate_activation=gate_activation,
origin_mode=origin_mode)
self.size = size
self.h_0 = h_0
self.is_reverse = is_reverse
def forward(self, inputs):
hidden = self.h_0
res = []
for i in range(inputs.shape[1]):
if self.is_reverse:
i = inputs.shape[1] - 1 - i
input_ = inputs[ :, i:i+1, :]
input_ = fluid.layers.reshape(input_, [-1, input_.shape[2]], inplace=False)
hidden, reset, gate = self.gru_unit(input_, hidden)
hidden_ = fluid.layers.reshape(hidden, [-1, 1, hidden.shape[1]], inplace=False)
res.append(hidden_)
if self.is_reverse:
res = res[::-1]
res = fluid.layers.concat(res, axis=1)
return res

class GRU(fluid.dygraph.Layer):def __init__(self):super(GRU, self).__init__()self.dict_dim = train_parameters["vocab_size"]self.emb_dim = 128self.hid_dim = 128self.fc_hid_dim = 96self.class_dim = 2self.batch_size = train_parameters["batch_size"]self.seq_len = train_parameters["padding_size"]self.embedding = Embedding(size=[self.dict_dim + 1, self.emb_dim],dtype='float32',param_attr=fluid.ParamAttr(learning_rate=30),is_sparse=False)h_0 = np.zeros((self.batch_size, self.hid_dim), dtype="float32")h_0 = to_variable(h_0)self._fc1 = Linear(input_dim=self.hid_dim, output_dim=self.hid_dim*3)self._fc2 = Linear(input_dim=self.hid_dim, output_dim=self.fc_hid_dim, act="relu")self._fc_prediction = Linear(input_dim=self.fc_hid_dim,output_dim=self.class_dim,act="softmax")self._gru = DynamicGRU(size=self.hid_dim, h_0=h_0)def forward(self, inputs, label=None):emb = self.embedding(inputs)o_np_mask =to_variable(inputs.numpy().reshape(-1,1) != self.dict_dim).astype('float32')mask_emb = fluid.layers.expand(to_variable(o_np_mask), [1, self.hid_dim])emb = emb * mask_embemb = fluid.layers.reshape(emb, shape=[self.batch_size, -1, self.hid_dim])fc_1 = self._fc1(emb)gru_hidden = self._gru(fc_1)gru_hidden = fluid.layers.reduce_max(gru_hidden, dim=1)tanh_1 = fluid.layers.tanh(gru_hidden)fc_2 = self._fc2(tanh_1)prediction = self._fc_prediction(fc_2)if label is not None:acc = fluid.layers.accuracy(prediction, label=label)return prediction, accelse:return prediction

4.3 训练模型


def train():
with fluid.dygraph.guard(place = fluid.CUDAPlace(0)): # # 因为要进行很大规模的训练,因此我们用的是GPU,如果没有安装GPU的可以使用下面一句,把这句代码注释掉即可
# with fluid.dygraph.guard(place = fluid.CPUPlace()):

        processor = SentaProcessor()train_data_generator = processor.data_generator(batch_size=train_parameters["batch_size"], phase='train')model = GRU()sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=train_parameters["lr"],parameter_list=model.parameters())steps = 0Iters, total_loss, total_acc = [], [], []for eop in range(train_parameters["epoch"]):for batch_id, data in enumerate(train_data_generator()):steps += 1doc = to_variable(np.array([np.pad(x[0][0:train_parameters["padding_size"]], (0, train_parameters["padding_size"] - len(x[0][0:train_parameters["padding_size"]])),'constant',constant_values=(train_parameters["vocab_size"]))for x in data]).astype('int64').reshape(-1))label = to_variable(np.array([x[1] for x in data]).astype('int64').reshape(train_parameters["batch_size"], 1))model.train()prediction, acc = model(doc, label)loss = fluid.layers.cross_entropy(prediction, label)avg_loss = fluid.layers.mean(loss)avg_loss.backward()sgd_optimizer.minimize(avg_loss)model.clear_gradients()if steps % train_parameters["skip_steps"] == 0:Iters.append(steps)total_loss.append(avg_loss.numpy()[0])total_acc.append(acc.numpy()[0])print("step: %d, ave loss: %f, ave acc: %f" %(steps,avg_loss.numpy(),acc.numpy()))if steps % train_parameters["save_steps"] == 0:save_path = train_parameters["checkpoints"]+"/"+"save_dir_" + str(steps)print('save model to: ' + save_path)fluid.dygraph.save_dygraph(model.state_dict(),save_path)draw_train_process(Iters, total_loss, total_acc)

在这里插入图片描述
在这里插入图片描述

4.4 模型评估

在这里插入图片描述

结果还可以,这里说明的是,刚开始的模型训练评估不可能这么好,很明显是过拟合的问题,这就需要我们调整我们的epoch、batchsize、激活函数的选择以及优化器、学习率等各种参数,通过不断的调试、训练最好可以得到不错的结果,但是,如果还要更好的模型效果,其实可以将GRU模型换为更为合适的RNN中的LSTM以及bi-
LSTM模型会好很多。

4.5 模型预测


train_parameters[“batch_size”] = 1

with fluid.dygraph.guard(place = fluid.CUDAPlace(0)):sentences = 'this is a great movie'data = load_data(sentences)print(sentences)print(data)data_np = np.array(data)data_np = np.array(np.pad(data_np,(0,150-len(data_np)),"constant",constant_values =train_parameters["vocab_size"])).astype('int64').reshape(-1)infer_np_doc = to_variable(data_np)model_infer = GRU()model, _ = fluid.load_dygraph("data/save_dir_750.pdparams")model_infer.load_dict(model)model_infer.eval()result = model_infer(infer_np_doc)print('预测结果为:正面概率为:%0.5f,负面概率为:%0.5f' % (result.numpy()[0][0],result.numpy()[0][1]))

在这里插入图片描述

训练的结果还是挺满意的,到此为止,我们的本次项目实验到此结束。

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/59529.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

IP协议分片重组问题

分片是什么&&为什么会有分片 IP数据报分片的主要目的是为了防止IP数据报文长度超过下一跳链路MTU(最大传输单元)。 数据链路层之MTU 数据链路层中有一个东西叫做MTU(最大传输单元),它的作用主要是控制上层给的数据报不要太大&#…

LabVIEW | 串口基础【自学】

转载 B站   up:不烧板子 地址:https://www.bilibili.com/read/cv9435378 原博图片不清楚,自己重新跟学截图自留,侵删 文章目录 一、串口基础1.串口发送(1)简单发送(2)循环发送&…

〔019〕Stable Diffusion 之 单图中绘制多人分区域写提示词 篇

✨ 目录 🎈 下载区域绘制插件🎈 区域绘制使用🎈 参数讲解和基础使用🎈 Lora 自组🎈 Lora 自组的使用🎈 分区扩散🎈 分区域提示 🎈 下载区域绘制插件 在绘制图片时,经常绘…

解决博客不能解析PHP直接下载源码问题

背景: 在网站设置反向代理后,网站突然不能正常访问,而是会直接下载访问文件的PHP源码 解决办法: 由于在搞完反向代理之后,PHP版本变成了纯静态,所以网站不能正常解析;只需要把PHP版本恢复正常…

【ARMv8 SIMD和浮点指令编程】NEON 乘法指令——乘法知多少?

NEON 乘法指令包括向量乘法、向量乘加和向量乘减,还有和饱和相关的指令。总之,乘法指令是必修课,在我们的实际开发中会经常遇到。 1 MUL (by element) 乘(向量,按元素)。该指令将第一个源 SIMD&FP 寄存器中的向量元素乘以第二个源 SIMD&FP 寄存器中的指定值,将…

IDEA软件安装包分享(附安装教程)

目录 一、软件简介 二、软件下载 一、软件简介 IntelliJ IDEA是一款流行的Java集成开发环境(IDE),由捷克软件开发公司JetBrains开发。它专为Java开发人员设计,提供了许多高级功能和工具,使得开发人员能够更高效地编写…

stm32----SPI协议

一、概述 SPI(Serial Peripheral Interface,串行外围设备接口),是Motorola公司提出的一种同步串行接口技术,是一种高速、全双工、同步通信总线,在芯片中只占用四根管脚用来控制及数据传输,节约…

C语言 - 结构体、结构体数组、结构体指针和结构体嵌套

结构体的意义 问题:学籍管理需要每个学生的下列数据:学号、姓名、性别、年龄、分数,请用 C 语言程序存储并处理一组学生的学籍。 单个学生学籍的数据结构: 学号(num): int 型姓名(…

2.Redis 通用命令

Redis 中最核心的两个命令: set 作用:设置 key 对应的 value 值并存储进去。若key已包含一个值,则无论其类型如何,都会覆盖该值。在SET操作成功时,将丢弃与密钥相关联的任何先前生存时间。 对于上述这里的 key和val…

五、Kafka消费者

目录 5.1 Kafka的消费方式5.2 Kafka 消费者工作流程1、总体流程2、消费者组原理3、消费者组初始化流程4、消费者组详细消费流程 5.3 消费者API1 独立消费者案例(订阅主题)2 独立消费者案例(订阅分区)3 消费者组案例 5.4 生产经验—…

Linux内核学习(十二)—— 页高速缓存和页回写(基于Linux 2.6内核)

目录 一、缓存手段 二、Linux 页高速缓存 三、flusher 线程 Linux 内核实现了一个被叫做页高速缓存(page cache)的磁盘缓存,它主要用来减少对磁盘的 I/O 操作。它是通过把磁盘中的数据缓存到内存中,把对磁盘的访问变为对物理内…

聚类分析 | MATLAB实现基于AHC聚类算法可视化

聚类分析 | MATLAB实现基于AHC聚类算法可视化 目录 聚类分析 | MATLAB实现基于AHC聚类算法可视化效果一览基本介绍程序设计参考资料 效果一览 基本介绍 AHC聚类算法,聚类结果可视化,MATLAB程序。 Agglomerative Hierarchical Clustering(自底…

JVM ZGC垃圾收集器

ZGC垃圾收集器 ZGC(“Z”并非什么专业名词的缩写,这款收集器的名字就叫作Z Garbage Collector)是一款在JDK 11中新加入的具有实验性质[1]的低延迟垃圾收集器,是由Oracle公司研发的。 ZGC收集器是一款基于Region内存布局的&#…

为什么深度网络(vgg,resnet)最后都不使用softmax(概率归一)函数,而是直接加fc层?

这个问题很简单,并不是没有使用softmax,而是没有显式使用softmax。 随着深度学习框架的发展,为了更好的性能,部分框架选择了在使用交叉熵损失函数时默认加上softmax,这样无论你的输出层是什么,只要用了nn.…

Linux 打开U盘硬盘等报错 file type exfat not configured in kernel

目录 原因: 查看系统文件系统和当前系统版本 回归正题,如何解决报错 在centons 7中打开U盘,报错file type exfat not configured in kernel。 原因: 这是因为Linux采用的文件系统和我U盘的文件系统不一致引起。如下图&#xf…

2023蓝帽杯初赛ctf部分题目

Web LovePHP 打开网站环境,发现显示出源码 来可以看到php版本是7.4.33 简单分析了下,主要是道反序列化的题其中发现get传入的参数里有_号是非法字符,如果直接传值传入my_secret.flag,会被php处理掉 绕过 _ 的方法 对于__可以…

C++哈希(散列)与unordered关联式容器封装(Map、Set)

一、unordered系列关联式容器 在C98中,STL提供了以红黑树为底层数据结构的关联式容器(map、set等),查询时的效率可以达到,最差情况下需要比较红黑树的高度次。因此在C11中,STL提供了四个unordered系列关联式容器&…

Star History 月度开源精选|Llama 2 及周边生态特辑

7 月 18 日,Meta 发布了 Llama,大语言模型 Llama 1 的进阶版,可以自由免费用于研究和商业,支持私有化部署。 所以本期 Star History 的主题是:帮助你快速把 Llama 2 在自己机器上跑起来的开源工具,无论你的…

LeetCode 面试题 02.04. 分割链表

文章目录 一、题目二、C# 题解 一、题目 给你一个链表的头节点 head 和一个特定值 x,请你对链表进行分隔,使得所有 小于 x 的节点都出现在 大于或等于 x 的节点之前。 你不需要 保留 每个分区中各节点的初始相对位置。 点击此处跳转题目。 示例 1&#…

【JS案例】JS实现手风琴效果

JS案例手风琴 🌟效果展示 🌟HTML结构 🌟CSS样式 🌟实现思路 🌟具体实现 1.绑定事件 2.自定义元素属性 3.切换菜单 🌟完整JS代码 🌟写在最后 🌟效果展示 🌟HTML…