专车数据层架构进化往事:好的架构是进化来的,不是设计来的

 很多年前,读了子柳老师的《淘宝技术这十年》。这本书成为了我的架构启蒙书,书中的一句话像种子一样深埋在我的脑海里:“好的架构是进化来的,不是设计来的”

2015 年,我加入神州专车订单研发团队,亲历了专车数据层「架构进化」的过程。这次工作经历对我而言非常有启发性,也让我经常感慨:“好的架构果然是一点点进化来的”。

1 单数据库架构

产品初期,技术团队的核心目标是:“快速实现产品需求,尽早对外提供服务”

彼时的专车服务都连同一个 SQLServer 数据库,服务层已经按照业务领域做了一定程度的拆分。

这种架构非常简单,团队可以分开协作,效率也极高。随着专车订单量的不断增长,早晚高峰期,用户需要打车的时候,点击下单后经常无响应。

系统层面来看:

  1. 数据库瓶颈显现。频繁的磁盘操作导致数据库服务器 IO 消耗增加,同时多表关联,排序,分组,非索引字段条件查询也会让 cpu 飙升,最终都会导致数据库连接数激增;

  2. 网关大规模超时。在高并发场景下,大量请求直接操作数据库,数据库连接资源不够用,大量请求处于阻塞状态。

2 SQL 优化和读写分离

为了缓解主数据库的压力,很容易就想到的策略:SQL 优化。通过性能监控平台和 DBA 同学协作分析出业务慢 SQL ,整理出优化方案:

  1. 合理添加索引;

  2. 减少多表 JOIN 关联,通过程序组装,减少数据库读压力;

  3. 减少大事务,尽快释放数据库连接。

另外一个策略是:读写分离

读写分离的基本原理是让主数据库处理事务性增、改、删操作( INSERT、UPDATE、DELETE),而从数据库处理 SELECT 查询操作。

专车架构团队提供的框架中,支持读写分离,于是数据层架构进化为如下图:

读写分离可以减少主库写压力,同时读从库可水平扩展。当然,读写分离依然有局限性:

  1. 读写分离可能面临主从延迟的问题,订单服务载客流程中对实时性要求较高,因为担心延迟问题,大量操作依然使用主库查询;

  2. 读写分离可以缓解读压力,但是写操作的压力随着业务爆发式的增长并没有很有效的缓解。

3 业务领域分库

虽然应用层面做了优化,数据层也做了读写分离,但主库的压力依然很大。接下来,大家不约而同的想到了业务领域分库,也就是:将数据库按业务领域拆分成不同的业务数据库,每个系统仅访问对应业务的数据库。

业务领域分库可以缓解核心订单库的性能压力,同时也减少系统间的相互影响,提升了系统整体稳定性。

随之而来的问题是:原来单一数据库时,简单的使用 JOIN 就可以满足需求,但拆分后的业务数据库在不同的实例上,就不能跨库使用 JOIN 了,因此需要对系统边界重新梳理,业务系统也需要重构 。

重构重点包含两个部分:

  1. 原来需要 JOIN 关联的查询修改成 RPC 调用,程序中组装数据 ;

  2. 业务表适当冗余字段,通过消息队列或者异构工具同步。

4 缓存和 MQ

专车服务中,订单服务是并发量和请求量最高,也是业务中最核心的服务。虽然通过业务领域分库,SQL 优化提升了不少系统性能,但订单数据库的写压力依然很大,系统的瓶颈依然很明显。

于是,订单服务引入了 缓存  MQ 

乘客在用户端点击立即叫车,订单服务创建订单,首先保存到数据库后,然后将订单信息同步保存到缓存中。

在订单的载客生命周期里,订单的修改操作先修改缓存,然后发送消息到 MetaQ ,订单落盘服务消费消息,并判断订单信息是否正常(比如有无乱序),若订单数据无误,则存储到数据库中。

核心逻辑有两点:

  1. 缓存集群中存储最近七天订单详情信息,大量订单读请求直接从缓存获取;

  2. 在订单的载客生命周期里,写操作先修改缓存,通过消息队列异步落盘,这样消息队列可以起到消峰的作用,同样可以降低数据库的压力。

这次优化提升了订单服务的整体性能,也为后来订单服务库分库分表以及异构打下了坚实的基础。

5 从 SQLServer 到 MySQL

业务依然在爆炸增长,每天几十万订单,订单表数据量很快将过亿,数据库天花板迟早会触及。

订单分库分表已成为技术团队的共识。业界很多分库分表方案都是基于 MySQL 数据库,专车技术管理层决定先将订单库整体先从 SQLServer 迁移到 MySQL 。

迁移之前,准备工作很重要 :

  1. SQLServer 和 MySQL 两种数据库语法有一些差异,订单服务必须要适配 MySQL 语法。

  2. 订单 order_id 是主键自增,但在分布式场景中并不合适,需要将订单 id 调整为分布式模式。

当准备工作完成后,才开始迁移。

迁移过程分两部分:历史全量数据迁移 和 增量数据迁移

历史数据全量迁移主要是 DBA 同学通过工具将订单库同步到独立的 MySQL 数据库。

增量数据迁移:因为 SQLServer 无 binlog 日志概念,不能使用 maxwell 和 canal 等类似解决方案。订单团队重构了订单服务代码,每次订单写操作的时候,会发送一条 MQ 消息到 MetaQ 。为了确保迁移的可靠性,还需要将新库的数据同步到旧库,也就是需要做到双向同步 。

迁移流程:

  1. 首先订单服务(SQLServer 版)发送订单变更消息到 MetaQ ,此时并不开启「旧库消息消费」,让消息先堆积在 MetaQ 里;

  2. 然后开始迁移历史全量数据,当全量迁移完成后,再开启「旧库消息消费」,这样新订单库就可以和旧订单库数据保持同步了;

  3. 开启「新库消息消费」,然后部署订单服务( MySQL 版),此时订单服务有两个版本同时运行,检测数据无误后,逐步增加新订单服务流量,直到老订单服务完全下线。

6 自研分库分表组件

业界分库分表一般有 proxy 和 client 两种流派。

▍ proxy 模式

代理层分片方案业界有 Mycat ,cobar 等 。

它的优点:应用零改动,和语言无关,可以通过连接共享减少连接数消耗。缺点:因为是代理层,存在额外的时延。

▍ client 模式

应用层分片方案业界有 sharding-jdbc ,TDDL 等。

它的优点:直连数据库,额外开销小,实现简单,轻量级中间件。缺点:无法减少连接数消耗,有一定的侵入性,多数只支持 Java 语言。

神州架构团队选择自研分库分表组件,采用了 client 模式 ,组件命名:SDDL

订单服务需要引入是 SDDL 的 jar 包,在配置中心配置 数据源信息 sharding key  路由规则 等,订单服务只需要配置一个 datasourceId 即可。

7 分库分表策略

7.1 乘客维度

专车订单数据库的查询主维度是:乘客,乘客端按乘客 user_id 和 订单 order_id 查询频率最高,我们选择 user_id 做为 sharding key ,相同用户的订单数据存储到同一个数据库中。

分库分表组件 SDDL 和阿里开源的数据库中间件 cobar 路由算法非常类似的。

为了便于思维扩展,先简单介绍下 cobar 的分片算法。

假设现在需要将订单表平均拆分到 4 个分库 shard0 ,shard1 ,shard2 ,shard3 。首先将 [0-1023] 平均分为 4 个区段:[0-255],[256-511],[512-767],[768-1023],然后对字符串(或子串,由用户自定义)做 hash, hash 结果对 1024 取模,最终得出的结果 slot 落入哪个区段,便路由到哪个分库。

cobar 的默认路由算法 ,可以和 雪花算法 天然融合在一起, 订单 order_id 使用雪花算法,我们可以将 slot 的值保存在 10 位工作机器 ID 里。

通过订单 order_id 可以反查出 slot , 就可以定位该用户的订单数据存储在哪个分区里。

Integer getWorkerId(Long orderId) {Long workerId = (orderId >> 12) & 0x03ff;return workerId.intValue();
}

专车 SDDL 分片算法和 cobar 差异点在于:

  1. cobar 支持最大分片数是 1024,而 SDDL 最大支持分库数 1024*8=8192,同样分四个订单库,每个分片的 slot 区间范围是 2048 ;

  1. 因为要支持 8192 个分片,雪花算法要做一点微调,雪花算法的 10 位工作机器修改成 13 位工作机器,时间戳也调整为:38 位时间戳(由某个时间点开始的毫秒数)。

7.2 司机维度

虽然解决了主维度乘客分库分表问题,但专车还有另外一个查询维度,在司机客户端,司机需要查询分配给他的订单信息。

我们已经按照乘客 user_id 作为 sharding key ,若按照司机 driver_id 查询订单的话,需要广播到每一个分库并聚合返回,基于此,技术团队选择将乘客维度的订单数据异构到以司机维度的数据库里。

司机维度的分库分表策略和乘客维度逻辑是一样的,只不过 sharding key 变成了司机 driver_id 

异构神器 canal 解析乘客维度四个分库的 binlog ,通过 SDDL 写入到司机维度的四个分库里。

这里大家可能有个疑问:虽然可以异构将订单同步到司机维度的分库里,毕竟有些许延迟,如何保证司机在司机端查询到最新的订单数据呢 ?

缓存和 MQ 这一小节里提到:缓存集群中存储最近七天订单详情信息,大量订单读请求直接从缓存获取。订单服务会缓存司机和当前订单的映射,这样司机端的大量请求就可以直接缓存中获取,而司机端查询订单列表的频率没有那么高,异构复制延迟在 10 毫秒到 30 毫秒之间,在业务上是完全可以接受的。

7.3 运营维度

专车管理后台,运营人员经常需要查询订单信息,查询条件会比较复杂,专车技术团队采用的做法是:订单数据落盘在乘客维度的订单分库之后,通过 canal 把数据同步到 Elastic Search。

7.4 小表广播

业务中有一些配置表,存储重要的配置,读多写少。在实际业务查询中,很多业务表会和配置表进行联合数据查询。但在数据库水平拆分后,配置表是无法拆分的。

小表广播的原理是:将小表的所有数据(包括增量更新)自动广播(即复制)到大表的机器上。这样,原来的分布式 JOIN 查询就变成单机本地查询,从而大大提高了效率。

专车场景下,小表广播是非常实用的需求。比如:城市表是非常重要的配置表,数据量非常小,但订单服务,派单服务,用户服务都依赖这张表。

通过 canal 将基础配置数据库城市表同步到订单数据库,派单数据库,用户数据库。

8 平滑迁移

分库分表组件 SDDL 研发完成,并在生产环境得到一定程度的验证后,订单服务从单库 MySQL 模式迁移到分库分表模式条件已经成熟。

迁移思路其实和从 SQLServer 到 MySQL 非常类似。

整体迁移流程:

  1. DBA 同学准备乘客维度的四个分库,司机维度的四个分库 ,每个分库都是最近某个时间点的全量数据;

  2. 八个分库都是全量数据,需要按照分库分表规则删除八个分库的冗余数据 ;

  3. 开启正向同步,旧订单数据按照分库分表策略落盘到乘客维度的分库,通过 canal 将乘客维度分库订单数据异构复制到司机维度的分库中;

  4. 开启反向同步,修改订单应用的数据源配置,重启订单服务,订单服务新创建的订单会落盘到乘客维度的分库,通过 canal 将乘客维度分库订单数据异构到全量订单库以及司机维度的数据库;

  5. 验证数据无误后,逐步更新订单服务的数据源配置,完成整体迁移。

9 数据交换平台

专车订单已完成分库分表,很多细节都值得复盘:

  1. 全量历史数据迁移需要 DBA 介入 ,技术团队没有成熟的工具或者产品轻松完成;

  2. 增量数据迁移通过 canal 来实现。随着专车业务的爆发增长,数据库镜像,实时索引构建,分库异构等需求越来越多,虽然 canal 非常优秀,但它还是有瑕疵,比如缺失任务控制台,数据源管理能力,任务级别的监控和报警,操作审计等功能。

面对这些问题,架构团队的目标是打造一个平台,满足各种异构数据源之间的实时增量同步和离线全量同步,支撑公司业务的快速发展。

基于这个目标,架构团队自研了 dataLink 用于增量数据同步,深度定制了阿里开源的 dataX 用于全量数据同步。

10 写到最后

专车架构进化之路并非一帆风顺,也有波折和起伏,但一步一个脚印,专车的技术储备越来越深厚。

2017 年,瑞幸咖啡在神州优车集团内部孵化,专车的这些技术储备大大提升了瑞幸咖啡技术团队的研发效率,并支撑业务的快速发展。 比如瑞幸咖啡的订单数据库最开始规划的时候,就分别按照用户维度,门店维度各拆分了 8 个数据库实例,分库分表组件 SDDL 和 数据交换平台都起到了关键的作用 。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/595266.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

将DOM结构转换成图片保存至本地或保存至剪切板

在新业务需求中,碰到这样一个场景,需要将后端返回的表格数据,保存至本地或者保存至剪切板,直接发送给用户使用。 1. 将内容转换成图片并保存至本地 1.1 交互效果 如图所示,想要点击复制按钮后,将下面这个…

Talk | 香港科技大学博士生陈竞晔:TextDiffuser系列让扩散模型渲染文本不再是难题

本期为TechBeat人工智能社区第560期线上Talk。 北京时间1月3日(周三)20:00,香港科技大学在读博士生—陈竞晔的Talk已准时在TechBeat人工智能社区开播! 他与大家分享的主题是: “TextDiffuser系列让扩散模型渲染文本不再是难题”,介绍了他的团…

2020年认证杯SPSSPRO杯数学建模D题(第一阶段)让电脑桌面飞起来全过程文档及程序

2020年认证杯SPSSPRO杯数学建模 D题 让电脑桌面飞起来 原题再现: 对于一些必须每天使用电脑工作的白领来说,电脑桌面有着非常特殊的意义,通常一些频繁使用或者比较重要的图标会一直保留在桌面上,但是随着时间的推移,…

如何无需公网IP实现远程访问Windows本地WebDAV服务中存储文件

文章目录 1. 安装IIS必要WebDav组件2. 客户端测试3. cpolar内网穿透3.1 打开Web-UI管理界面3.2 创建隧道3.3 查看在线隧道列表3.4 浏览器访问测试 4. 安装Raidrive客户端4.1 连接WebDav服务器4.2 连接成功4.2 连接成功总结: 自己用Windows Server搭建了家用NAS主机&…

Vue+ElementUI笔记(1)

一、表格 1.上移、下移和移除功能 需求:有时我们会面对类似这样的表格 图中的上移,下移功能需求明显要求我们改变两行数据的顺序。在实际开发中这种功能一般由后台来做,因为列表数据一般从后台获取刷新。即是我们点击”上移“,向…

mac环境下安装部署mysql5.7

下载安装包 进入官网下载MySQL5.7的安装包 https://www.mysql.com/downloads/ 安装包下载完成后双击pkg文件进行安装,无脑点下一步即可,注意安装完成后记得保存最后弹出框的密码 进入系统偏好设置,找到mysql,开启mysql服务…

maven:在maven中使用tomcat7插件

1、在pom.xml中添加tomcat7插件 <build><!-- Embedded Apache Tomcat required for testing war --><plugin><groupId>org.apache.tomcat.maven</groupId><artifactId>tomcat7-maven-plugin</artifactId><version>2.2</ver…

springboot漫画网站源码和论文

随着信息技术和网络技术的飞速发展&#xff0c;人类已进入全新信息化时代&#xff0c;传统管理技术已无法高效&#xff0c;便捷地管理信息。为了迎合时代需求&#xff0c;优化管理效率&#xff0c;各种各样的管理系统应运而生&#xff0c;各行各业相继进入信息管理时代&#xf…

面试官:如何实现两栏布局,右侧自适应?三栏布局中间自适应呢?

面试官&#xff1a;如何实现两栏布局&#xff0c;右侧自适应&#xff1f;三栏布局中间自适应呢&#xff1f; 一、背景 在日常布局中&#xff0c;无论是两栏布局还是三栏布局&#xff0c;使用的频率都非常高 两栏布局 两栏布局实现效果就是将页面分割成左右宽度不等的两列&am…

ROS学习记录:在ROS中用C++实现激光雷达避障

前言 本文建立在成功获取激光雷达数据的基础上&#xff0c;详细参考 在ROS中用C实现获取激光雷达的数据 一、实现思路 二、在VScode中打开之前编写好的lidar_node.cpp 三、在lidar_node.cpp中写入如下代码 #include <ros/ros.h> #include <std_msgs/String.h> …

Mysql的四大引擎,账号管理,数据库的建立

数据库存储引擎查看 Support字段说明 default的为默认引擎 YES表示可以使用 NO表示不能使用 命令 SHOW ENGINES 四大引擎 MEMORY 使用场景&#xff1a;由于易失性&#xff0c;可以用于存储在分析中产生的中间表 特点 所有的数据都保存在内存中&#xff0c;一旦服务器重启&…

[每周一更]-(第55期):Go的interface

参考地址 https://juejin.cn/post/6978322067775029261https://gobyexample.com/interfaceshttps://go.dev/tour/methods/9 介绍下Go的interface 在Go语言中&#xff0c;interface是一种特殊的数据类型&#xff0c;用于定义一组方法的规范。它描述了一个对象可以具备的行为&…

ElasticSearch自定义算分排序(Function Score Query)

使用 function score query&#xff0c;可以修改文档的相关性算分 (query score)&#xff0c;根据新得到的算分排序。 目录 Function Score Query 案例 Function Score Query 几种默认的计算分值的函数&#xff1a; Weight:为每一个文档设置一个简单而不被规范化的权重Fie…

Centos8破解Root密码

注&#xff1a;Centos7同理。 1.重启Centos8系统后&#xff0c;在启动页面中选中第一行&#xff0c;按【e】键进入界面。 2.找到linux开头所在行的找到“ro”改为上“rw init/sysroot/bin/bash”&#xff0c;同时按下【Ctrl】【X】跳转到紧急模式。 3.在紧急模式下&#xff0c…

UniversalTransformer with Adaptive Computation Time(ACT)

原论文链接&#xff1a;https://arxiv.org/abs/1807.03819 Main code import torch import numpy as npclass PositionTimestepEmbedding(torch.nn.Module):def forward(self, x, t):device x.devicesequence_length x.size(1)d_model x.size(2)position_embedding np.arr…

Qt界面篇:Qt停靠控件QDockWidget、树控件QTreeWidget及属性控件QtTreePropertyBrowser的使用

1、功能介绍 本篇主要使用Qt停靠控件QDockWidget、树控件QTreeWidget及Qt属性控件QtTreePropertyBrowser来搭建一个简单实用的主界面布局。效果如下所示。 2、控件使用详解 2.1 停靠控件QDockWidget QDockWidget可以停靠在 QMainWindow 内或作为桌面上的顶级窗口浮动。默认值…

基于OpenCV的透视变化

基本概念 透视变换(Perspective Transformation)是仿射变换的一种非线性扩展,是将图片投影到一个新的视平面(Viewing Plane)&#xff0c;也称作投影映射(Projective Mapping)。 原理&#xff1a;将二维的图片投影到一个三维视平面上&#xff0c;然后再转换到二维坐标下&#…

everything 本地文件搜索工具 完胜WIndows搜索 速度99% 超级给力

"Everything" 是一个 Windows 平台上的免费软件&#xff0c;它是一款功能强大的本地文件搜索工具。它允许用户在计算机上快速而准确地搜索文件和文件夹。以下是一些 "Everything" 的主要特点&#xff1a; 实时搜索&#xff1a; "Everything" 提供…

【小沐学NLP】Python实现TF-IDF算法(nltk、sklearn、jieba)

文章目录 1、简介1.1 TF1.2 IDF1.3 TF-IDF2.1 TF-IDF(sklearn)2.2 TF-IDF(nltk)2.3 TF-IDF(Jieba)2.4 TF-IDF(python) 结语 1、简介 TF-IDF&#xff08;term frequency–inverse document frequency&#xff09;是一种用于信息检索与数据挖掘的常用加权技术。TF是词频(Term Fr…

多台西门子PLC对接Oracle数据库,实现PLC与数据库双向数据通讯

智能网关IGT-DSER方便实现多台PLC与数据库之间的数据通讯&#xff0c;既可以读取PLC的数据上报到数据库&#xff0c;也可以从数据库查询数据后写入到PLC的寄存器。 网关安装在设备侧&#xff0c;与设备同时起停&#xff0c;不担心数据丢失&#xff1b;在断网、服务器维护上报数…