基于YOLOv8深度学习的人脸面部表情识别系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
22.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】23.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
24.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】25.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

《------正文------》

基本功能演示

在这里插入图片描述

摘要:人脸面部表情识别在多个领域中都扮演着重要的角色,通过解读人的情绪反应,增强机器与人之间的交互体验。本文基于YOLOv8深度学习框架,通过28079张图片,训练了一个进行人脸面部表情识别的检测模型,可用于检测7种不同的人物表情。并基于此模型开发了一款带UI界面的人脸面部表情识别系统,可用于实时检测场景中的人物面部表情,更方便进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片视频以及摄像头进行目标检测,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

文章目录

  • 基本功能演示
  • 前言
  • 一、软件核心功能介绍及效果演示
    • 软件主要功能
    • (1)图片检测演示
    • (2)视频检测演示
    • (3)摄像头检测演示
  • 二、模型的训练、评估与推理
    • 1.YOLOv8的基本原理
    • 第一步:人脸位置检测
    • 第二步:人脸表情识别
      • 1. 数据集准备与训练
      • 2.模型训练
      • 3. 训练结果评估
      • 4. 利用模型进行表情识别
  • 【获取方式】
  • 结束语

点击跳转至文末《完整相关文件及源码》获取


前言

人脸面部表情识别在多个领域中都扮演着重要的角色,通过解读人的情绪反应,增强机器与人之间的交互体验。

在人机交互中,面部表情系统可以使计算机更加智能化,能够理解和响应用户的情感状态,从而提供更加个性化和富有同理心的服务。例如,在教育领域,该技术能够识别学生的情绪变化,帮助教师调整教学方式以提高学生的学习效率;在心理健康领域,它可以作为情绪监测工具,帮助医生评估患者情绪状态,辅助诊断和治疗;在自动驾驶系统中,通过监测驾驶员的表情和状态,可以有效预防疲劳或注意力不集中驾驶带来的风险。
此外,人脸面部表情识别技术在市场研究和用户体验设计中也极为有用,能够识别消费者在看到某个产品或广告时的真实情绪反应,从而帮助企业更好地了解消费者需求,优化产品设计和营销策略。在智能家居和安全监控系统中,结合情绪识别可以提供更加人性化的服务,如根据用户的情绪状态调整室内的灯光、音乐等环境设置,或是及时警觉异常情绪状态来预防潜在风险。除此之外,面部表情识别技术还广泛应用于娱乐产业,如视频游戏和虚拟现实中,以提供更加沉浸和互动的用户体验。
综上所述,人脸面部表情识别技术开启了新一代人机交互的大门,它的应用场景广泛,从提高商业价值到增进人类福祉,这项技术的发展极具潜力并正在逐渐改变我们的生活与工作方式。

博主通过搜集不同种类的人脸表情的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的人脸面部表情识别系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行7种不同人物表情识别,表情分别为:['生气','厌恶','害怕','高兴','中立','伤心','惊讶'];
2. 支持图片、视频及摄像头进行人脸表情检测;
3. 界面可实时显示表情结果置信度各表情概率值等信息;

(1)图片检测演示

点击打开图片图标,选择需要检测的图片,会显示检测结果,同时会将7种表情的概率值显示在右方。操作演示如下:点击目标下拉框后,可以选定指定目标的结果信息进行显示。
注:1.右侧目标默认显示置信度最大一个目标。
单个图片检测操作如下:
在这里插入图片描述

(2)视频检测演示

点击打开视频按钮,打开选择需要检测的视频,就会自动显示检测结果。
在这里插入图片描述

(3)摄像头检测演示

点击打开摄像头按钮,可以打开摄像头,可以实时进行检测,再次点击摄像头按钮,可关闭摄像头。
在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
在这里插入图片描述

本文的人脸表情识别,主要分为两步。第一步:检测人脸位置第二步:将人脸位置截取出来,作为输入传入到使用YOLOv8训练的表情分类模型,从而得到表情识别的结果。

第一步:人脸位置检测

关于人脸位置检测的方法有很多,比如:opencv的dilb库,face_recognition,insightface,mediapipe,deepface等都可以进行人脸位置检测。因为本文主要是对人脸面部表情进行识别,重点实现的是第二部分的表情识别部分。因此对于第一步,本文直接使用的是通过yolov8官方训练好的人脸检测模型yolov8n-face.pt,来进行人脸位置检测,该模型是通过人脸目标数据集训练而来,精度较高。
具体使用方法如下:

#coding:utf-8
from ultralytics import YOLO
import cv2
if __name__ == '__main__':# 所需加载的模型目录path = 'models/yolov8n-face.pt'# 需要检测的图片地址img_path = "TestFiles/test3.jpg"model = YOLO(path, task='detect')# 检测图片results = model(img_path,conf=0.5)res = results[0].boxes.xyxy.tolist()print(res)img = cv2.imread(img_path)for each in res:# 开始的y坐标:结束的y坐标,开始x:结束的xx1,y1,x2,y2 = each[:4]x1 = int(x1)y1 = int(y1)x2 = int(x2)y2 = int(y2)cv2.rectangle(img, (x1, y1), (x2, y2), (50, 50, 250), 3)cv2.imshow('face_detection', img)cv2.waitKey(0)

在这里插入图片描述
以上结果可以发现,该模型能够很好的检测人脸位置。下面我们需要使用yolov8训练一个表情识别的模型,对于检测到的人脸进行表情的识别判断

第二步:人脸表情识别

1. 数据集准备与训练

本文使用的数据集为人脸面部表情分类数据集,包含7种不同的人脸表情,分别是:['生气','厌恶','害怕','高兴','中立','伤心','惊讶']。一共包含35257张图片,其中训练集包含28079张图片,测试集包含7178张图片。部分数据集及类别信息如下。下面我们将使用该数据集训练一个表情分类模型,用于对截取后的人脸部分进行表情分类,从而达到进行表情识别的目的。
在这里插入图片描述
在这里插入图片描述

图片数据集的存放格式如下,在项目目录中新建datasets目录,同时将分类的图片分为训练集与验证集放入ExpressionData目录下。
在这里插入图片描述

2.模型训练

数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

#coding:utf-8
from ultralytics import YOLO# 加载预训练模型
model = YOLO("yolov8n-cls.pt")
if __name__ == '__main__':model.train(data='datasets/ExpressionData', epochs=300, batch=4)# results = model.val()# # results = model("自己的验证图片")

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

本文训练结果如下:
在这里插入图片描述
在这里插入图片描述

4. 利用模型进行表情识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

#coding:utf-8
from ultralytics import YOLO
import cv2import Config
import detect_tools as tools
import numpy as npif __name__ == '__main__':img_path = 'TestFiles/12.png'# 所需加载的模型目录face_model_path = 'models/yolov8n-face.pt'expression_model_path = 'models/expression_cls.pt'# 人脸检测模型face_model = YOLO(face_model_path, task='detect')# 表情识别模型expression_model = YOLO(expression_model_path, task='classify')cv_img = tools.img_cvread(img_path)face_cvimg, faces, locations = face_detect(cv_img, face_model)if faces is not None:for i in range(len(faces)):left, top, right, bottom = locations[i]# 彩色图片变灰度图img = cv2.cvtColor(faces[i], cv2.COLOR_BGR2GRAY)# 灰度图变3通道img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)rec_res = expression_model(img)probs = rec_res[0].probs.data.tolist()num = np.argmax(probs)label = Config.names[num]face_cvimg = cv2.putText(face_cvimg, label, ((left, top - 10)), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 250),2, cv2.LINE_AA)cv2.imshow('yolov8_detections',face_cvimg)cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款人脸面部表情识别系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,回复【软件】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,回复【软件】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的人脸面部表情识别系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/592547.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

js文件上传 分片上传/断点续传/极速秒传

(极速秒传)利用md5判断上传的文件是否存在 MD5信息摘要算法,一种被广泛使用的密码散列函数,可以产生出一个128位(16字节)的散列值(hash value),用于确保信息传输完整一致。 每一个文件都会生成…

对接第三方接口鉴权(Spring Boot+Aop+注解实现Api接口签名验证)

前言 一个web系统,从接口的使用范围也可以分为对内和对外两种,对内的接口主要限于一些我们内部系统的调用,多是通过内网进行调用,往往不用考虑太复杂的鉴权操作。但是,对于对外的接口,我们就不得不重视这个…

Elasticsearch:结合 ELSER 和 BM25 文本查询的相关搜索

Elastic Learned Spare EncodeR (ELSER) 允许你执行语义搜索以获得更相关的搜索结果。 然而,有时,将语义搜索结果与常规关键字搜索结果相结合以获得最佳结果会更有用。 问题是,如何结合文本和语义搜索结果? 首先,让我…

Java异常篇----第二篇

系列文章目录 文章目录 系列文章目录前言一、 Excption与Error包结构二、Thow与thorws区别三、Error与Exception区别?四、error和exception有什么区别前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章男女…

1213:八皇后问题 深度优先搜索算法

1213:八皇后问题 时间限制: 1000 ms 内存限制: 65536 KB 【题目描述】 在国际象棋棋盘上放置八个皇后,要求每两个皇后之间不能直接吃掉对方。 【输入】 (无) 【输出】 按给定顺序和格式输出所有八皇后问题的解(见样例)。 题目…

Spring源码之依赖注入(二)

书接上文 文章目录 一. Autowire底层注入逻辑1. 属性注入逻辑 一. Autowire底层注入逻辑 前面我们分析了Spring时如何找到某个目标类的所有注入点这一个核心逻辑,但还没又对核心注入方法inject进行详细分析,下面我们就来详细分析Spring拿到所有的注入点…

【CASS精品教程】CASS11计算城镇建筑密度

CASS中可以很方便计算建筑密度。 文章目录 一、建筑密度介绍二、CASS计算建筑密度1. 绘制宗地范围2. 绘制建筑物3. 计算建筑密度三、注意事项一、建筑密度介绍 建筑密度(building density;building coverage ratio),指在一定范围内,建筑物的基底面积总和与占用地面积的比…

纠删码ReedSolomon

随着大数据技术的发展,HDFS作为Hadoop的核心模块之一得到了广泛的应用。为了数据的可靠性,HDFS通过多副本机制来保证。在HDFS中的每一份数据都有两个副本,1TB的原始数据需要占用3TB的磁盘空间,存储利用率只有1/3。而且系统中大部分…

Spring Boot 2.7.11 集成 GraphQL

GraphQL介绍 GraphQL(Graph Query Language)是一种用于API的查询语言和运行时环境,由Facebook于2012年创建并在2015年公开发布。与传统的RESTful API相比,GraphQL提供了更灵活、高效和强大的数据查询和操作方式。 以下是GraphQL…

Spring技术内幕笔记之SpringMvc

WebApplicationContext接口的类继承关系 org.springframework.web.context.ContextLoader#initWebApplicationContext 对IOC容器的初始化 SpringMvc如何设计 DispatcherServlet类继承关系 MVC处理流程图如下: DispatcherServlet的工作大致可以分为两个部分&#xf…

NFC物联网开发智能衣橱解决方案

智能衣橱是智能家居的重要内容,现代家居市场对家居智能化控制尤为重视。但是,传统家居生产功能和模式已经无法满足智能化时代的需求,所以家居智能化成为家居行业发展的主要需求。与传统衣橱对比,智能衣橱的功能强大方便人们的生活…

Android--Jetpack--WorkManager详解

2024已经到来,愿你安睡时,山河入梦。愿你醒来时,满目春风。愿你欢笑时,始终如一。愿你行进时,前程似锦,坦荡从容。 编程语言的未来? 目录 一,定义 二,特点 三&#xff0c…

‘vue-cli-service‘ 不是内部或外部命令,也不是可运行的程序 或批处理文件。这个问题如何解决?

这个错误信息 vue-cli-service 不是内部或外部命令,也不是可运行的程序或批处理文件 表示 vue-cli-service 命令在你的系统上未被识别。这通常是因为 Vue CLI 没有被正确安装或其路径没有被加入到系统的环境变量中。以下是几个解决这个问题的步骤: 确认 …

LinkedList与ArrayList的比较

1.LinkedList 基于双向链表,无需连续内存 随机访问慢(要沿着链表遍历) 头尾插入删除性能高 占用内存多 2.ArrayList 基于数组,需要连续内存 随机访问快(指根据下标访问) 尾部插入、删除性能可以&…

从0搭建github.io网页

点击跳转到🔗我的博客文章目录 从0搭建github.io网页 文章目录 从0搭建github.io网页1.成果展示1.1 网址和源码1.2 页面展示 2.new对象2.1 创建仓库 3.github.io仓库的初始化3.1 千里之行,始于足下3.2 _config.yml3.3 一点杂活 4.PerCheung.github.io.p…

Linux 命令echo

命令作用 输出一行字符串在shell中,可以打印变量的值输出结果写入到文件在显示器上显示一段文字,起到提示的作用 语法 echo [选项] [字符串] 参数 字符含义-n不自动换行-e解释转义字符-E不解释转义字符 如果-e有效,则识别以下序列&…

SpringBoot 项目如何生成 swagger 文档

推荐使用 springdoc-openapi 的理由 1、springdoc-openapi 是 spring 官方出品,与 springboot 兼容更好(springfox 兼容有坑) 2、springdoc-openapi 社区更活跃,springfox 已经 2 年没更新了 3、springdoc-openapi 的注解更接近 …

(一)Matlab数值计算基础

目录 1.1Matlab命令组成 1.1.1基本符号 1.1.2功能符号 1.1.3常用命令 1.1Matlab命令组成 1.1.1基本符号 #提示运算符,表示软件处于准备就绪状态。在提示符号后输入一条命令或者一段程序后按Enter键,软件将给出相应的结果 >> *…

【Proteus仿真】【Arduino单片机】汽车尾气检测报警系统

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真Arduino单片机控制器,使用按键、LCD1602液晶、蜂鸣器模块、CO、NOx、HC和PM2.5气体传感器等。 主要功能: 系统运行后,LCD1602显示CO、NOx、HC和…

手机录屏没有声音?让你的录屏有声有色

“有人知道手机录屏怎么录声音吗?今天录制了一个小时的直播视频,后面查看的时候发现没有声音,真的非常崩溃,想问问大家有没有办法,解决这个问题。” 在手机录屏的过程中,有时候我们可能会面临录制视频没有…