openCV实战-系列教程4:图像梯度计算(Sobel算子/开运算/梯度计算方法/scharr算子/lapkacian算子)、源码解读

🧡💛💚💙💜OpenCV实战系列总目录

打印一个图片单独做出一个函数:

def cv_show(img,name):cv2.imshow(name,img)cv2.waitKey()cv2.destroyAllWindows()

1、sobel算子

先读进来一个原型白色图

img = cv2.imread('pie.png',cv2.IMREAD_GRAYSCALE)
cv2.imshow("img",img)
cv2.waitKey()
cv2.destroyAllWindows()

打印结果:

如图有两个3*3的卷积核,其中A是原始图片中的一个3*3的区域,这个A和3*3的卷积核所谓对应位置相乘的结果就分别是左右梯度和上下梯度

假如A是这个矩阵:

 那么Gx的计算结果就为:-x1+x3-2x4+2x6-x7+x9

代码实现就很简单了,直接一行就行:

sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)cv_show(sobelx,'sobelx')

dst = cv2.Sobel(src, ddepth, dx, dy, ksize) 

  • src:原始图像
  • ddepth:图像的深度
  • dx和dy分别表示水平和竖直方向
  • ksize是Sobel算子的大小,就是一个卷积核的大小

将上面的结果打印出来:

cv_show(sobelx,'sobelx')

 因为我们指定的是dx=1,dy=0,所以只计算了水平方向,很显然只有边界的地方才会有梯度

2、梯度计算方法

安装第1节的计算方法,白色减去黑色结果是正的,黑色减去白色结果就会为负数,而openCV的像素值在0-255,所以会将负数显示为0。如果加上绝对值就可以显示成右边的一圈白色了。

sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
sobelx = cv2.convertScaleAbs(sobelx)
cv_show(sobelx,'sobelx')

 打印结果:

 同样的方法计算一下上下梯度:

sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
sobely = cv2.convertScaleAbs(sobely)  
cv_show(sobely,'sobely')

 打印结果:

 分别计算水平方向和竖直方向再打印:

sobelxy = cv2.addWeighted(sobelx,0.5,sobely,0.5,0)
cv_show(sobelxy,'sobelxy')

打印结果:

 不建议直接把dx和dy都直接设置成1:

sobelxy=cv2.Sobel(img,cv2.CV_64F,1,1,ksize=3)
sobelxy = cv2.convertScaleAbs(sobelxy) 
cv_show(sobelxy,'sobelxy')

打印结果:

 换一个图做一遍,先打印原图:

img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE)
cv_show(img,'img')

打印结果:

img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
sobelx = cv2.convertScaleAbs(sobelx)
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
sobely = cv2.convertScaleAbs(sobely)
sobelxy = cv2.addWeighted(sobelx,0.5,sobely,0.5,0)
cv_show(sobelxy,'sobelxy')

第二行、第四行分别计算sobelx和sobely,第三行、第五行分别取绝对值,第六行最后融合在一起

,打印结果: 

3、scharr算子和lapkacian算子

scharr夏尔

 lapkacian拉普拉斯

scharr算子就是让结果更加敏感一些,lapkacian算子在推导过程使用了二阶导,lapkacian对噪音点会比较敏感,但是对于梯度的计算或者说边缘检测就不是那么友好了,所以lapkacian算子经常和其他方法结合在一起进行使用。

如上图,它不是和其他算子一样,有一个左右和上下的计算,它将目标像素值乘以-4然后加上上下左右的值。因为lapkacian没有分水平和竖直两个方式,所以不需要分开再合并了。

将三种方法都做一遍,放在一起进行比较:

#不同算子的差异
img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE)
sobelx = cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)
sobely = cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)
sobelx = cv2.convertScaleAbs(sobelx)   
sobely = cv2.convertScaleAbs(sobely)  
sobelxy =  cv2.addWeighted(sobelx,0.5,sobely,0.5,0)  scharrx = cv2.Scharr(img,cv2.CV_64F,1,0)
scharry = cv2.Scharr(img,cv2.CV_64F,0,1)
scharrx = cv2.convertScaleAbs(scharrx)   
scharry = cv2.convertScaleAbs(scharry)  
scharrxy =  cv2.addWeighted(scharrx,0.5,scharry,0.5,0) laplacian = cv2.Laplacian(img,cv2.CV_64F)
laplacian = cv2.convertScaleAbs(laplacian)   res = np.hstack((sobelxy,scharrxy,laplacian))
cv_show(res,'res')

打印结果:

很明显scharr算子更加敏感一下,计算出了更多的细节和线条 

最后看看原始图长什么样子:

img = cv2.imread('lena.jpg',cv2.IMREAD_GRAYSCALE)
cv_show(img,'img')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/59119.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java自动登录 selenium 自动登录并获取cookie

选择操作网页 我用的edge,谷歌我的版本太高没有对应的驱动… 下载Edge的驱动程序,直接解压就好里面只有一个.exe文件 https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver/ 复制即用,看注释 import com.alibaba.fastjs…

python的观察者模式案例

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言二、具体代码写在结尾 前言 最近写安卓的代码比较多,了解了java代码的注册回调机制,也就是观察者模式,搜索了一下python也有…

RabbitMQ---work消息模型

1、work消息模型 工作队列或者竞争消费者模式 在第一篇教程中,我们编写了一个程序,从一个命名队列中发送并接受消息。在这里,我们将创建一个工作队列,在多个工作者之间分配耗时任务。 工作队列,又称任务队列。主要思…

SystemVerilog interface详细介绍

1. Interface概念 System Verilog中引入了接口定义,接口与module 等价的定义,是要在其他的接口、module中直接定义,不能写在块语句中,跟class是不同的。接口是将一组线捆绑起来,可以将接口传递给module。 2. 接口的优…

Maven入门教程(一):安装Maven环境

视频教程:Maven保姆级教程 Maven入门教程(一):安装Maven环境 Maven入门教程(二):idea/Eclipse使用Maven Maven入门教程(三):Maven语法 Maven入门教程(四):Nexus私服 Maven入门教程(五):自定义脚手架 Maven项…

Vscode画流程图

1.下载插件 Draw.id Integration 2.桌面新建文件,后缀名改为XXX.drawio 在vscode打开此文件 ,就可以进行绘制流程图啦

6.Redis-hash

hash 哈希类型中的映射关系通常称为field-value,⽤于区分 Redis 整体的键值对(key-value),注意这⾥的value是指field对应的值,不是键(key)对应的值,请注意 value 在不同上下⽂的作⽤…

R语言和Python用泊松过程扩展:霍克斯过程Hawkes Processes分析比特币交易数据订单到达自激过程时间序列...

全文下载链接:http://tecdat.cn/?p25880 本文描述了一个模型,该模型解释了交易的聚集到达,并展示了如何将其应用于比特币交易数据。这是很有趣的,原因很多。例如,对于交易来说,能够预测在短期内是否有更多…

EVO大赛是什么

价格是你所付出的东西,而价值是你得到的东西 EVO大赛是什么? “EVO”大赛全称“Evolution Championship Series”,是北美最高规格格斗游戏比赛,大赛正式更名后已经连续举办12年,是全世界最大规模的格斗游戏赛事。常见…

angular抛出 ExpressionChangedAfterItHasBeenCheckedError错误分析

当变更检测完成后又更改了表达式值时,Angular 就会抛出 ExpressionChangedAfterItHasBeenCheckedError 错误。Angular 只会在开发模式下抛出此错误。 在开发模式下,Angular 在每次变更检测运行后都会执行一次附加检查,以确保绑定没有更改。这…

Java 8 新特性——Lambda 表达式(2)

一、Java Stream API Java Stream函数式编程接口最初在Java 8中引入,并且与 lambda 一起成为Java开发里程碑式的功能特性,它极大的方便了开放人员处理集合类数据的效率。 Java Stream就是一个数据流经的管道,并且在管道中对数据进行操作&…

springBoot打印精美logo

文章目录 🐒个人主页🏅JavaEE系列专栏📖前言:🎀文本logo 🐒个人主页 🏅JavaEE系列专栏 📖前言: 本篇博客主要以提供springBoot打印精美logo 🎀文本logo ??…

博流RISC-V芯片BL616开发环境搭建

文章目录 1、工具安装2、代码下载3、环境变量配置4、下载交叉编译器5、编译与下载运行6、使用ninja编译 本文分别介绍博流RISC-V芯片 BL616 在 Windows和Linux 下开发环境搭建,本文同时适用BL618,BL602,BL702,BL808系列芯片。 1、…

电商数据接口API:品牌价格监控与数据分析的重要工具

一、引言 随着电子商务的快速发展,传统品牌企业越来越重视在线销售市场。为了在竞争激烈的市场环境中取得成功,企业需要实时掌握市场动态,了解自身产品的销售情况、价格趋势以及竞品信息。为了实现这一目标,各大电商平台&#xf…

每天 26,315 美元罚款?交通安全局要求特斯拉提供 Autopilot数据

根据美国国家公路交通安全管理局(NHTSA)最近的特别命令,特斯拉公司被要求提供关于其自动驾驶功能Autopilot的相关信息。这一命令是继NHTSA于2021年8月启动初步评估后,在2022年6月升级为正式调查的一部分,NHTSA近期对特…

自学设计模式(类图、设计原则、单例模式 - 饿汉/懒汉)

设计模式需要用到面向对象的三大特性——封装、继承、多态(同名函数具有不同的状态) UML类图 eg.—— 描述类之间的关系(设计程序之间画类图) : public; #: protected; -: private; 下划线: static 属性名:类型(默认值…

NPM 管理组织包

目录 1、关于组织范围和包 1.1 管理无作用域的包 2、使用组织设置配置npm客户端 2.1 配置您的npm客户端以使用您组织的范围 为所有新包设置组织范围 为单个包设置组织范围 2.2 将默认包可见性更改为public 将单个包的包可见性设置为public 将所有包的包可见性设置为pu…

C++新经典 | C语言

目录 一、基础之查漏补缺 1.float精度问题 2.字符型数据 3.变量初值问题 4.赋值&初始化 5.头文件之<> VS " " 6.逻辑运算 7.数组 7.1 二维数组初始化 7.2 字符数组 8.字符串处理函数 8.1 strcat 8.2 strcpy 8.3 strcmp 8.4 strlen 9.函数 …

WPF 查看绑定错误——Snoop 的基本使用

关于 可以通过 Snoop 查看 WPF 程序的 Visual Tree&#xff0c;更多介绍请看 snoopwpf 快速开始 一、下载 snoopwpf.msi 安装后打开&#xff0c;选择自己的程序&#xff0c;点击 snoop&#xff08;望远镜&#xff09; 二、筛选 点击左侧下拉列表&#xff0c;选择 Show onl…

docker desktop安装es 并连接elasticsearch-head:5

首先要保证docker安装成功&#xff0c;打开cmd&#xff0c;输入docker -v&#xff0c;出现如下界面说明安装成功了 下面开始安装es 第一步&#xff1a;拉取es镜像 docker pull elasticsearch:7.6.2第二步&#xff1a;运行容器 docker run -d --namees7 --restartalways -p 9…