[C#]OpenCvSharp结合yolov8-face实现L2CS-Net眼睛注视方向估计或者人脸朝向估计

源码地址:

github地址:https://github.com/Ahmednull/L2CS-Net

L2CS-Net介绍:

眼睛注视(eye gaze) 是在各种应用中使用的基本线索之一。
它表示用户在人机交互和开放对话系统中的参与程度。此外,它还被用于增强现实,用于预测用户的注意力,从而提高设备的感知能力,降低功耗。
因此,研究人员开发了多种方法和技术来准确估计人类的凝视。这些方法分为两类: 基于模型的方法和基于外观的方法。
基于模型的方法通常需要专用硬件,这使得它们难以在不受约束的环境(unconstrained environment)中使用。
基于外观的方法将人类的视线直接从廉价的现成相机拍摄的图像中还原出来,使它们很容易在不受约束的设置下在不同的位置生成。
目前,基于CNN的方法是基于外观的方法是最常用的凝视估计方法,因为它提供了更好的凝视性能。
大部分的相关工作专注于开发新颖的基于CNN的网络,主要由流行的骨干(如VGG, ResNet-18 , ResNet-50等) 组成,来提取凝视特征,最终输出凝视方向。
这些网络的输入可以是单个流 (例如:如面部或眼睛图像)或多个流(如面部和眼睛图像)。
用于注视估计任务的最常见的损失函数是均方损失或L2损失。
尽管基于CNN的方法提高了注视精度,但它们缺乏鲁棒性和泛化性,特别是在无约束环境下。
本文介绍了一种新的估计方法来在RGB图像中估计3D凝视角度,使用一种 multi-loss 的方法。
我们建议使用两个全连接层独立回归每个凝视角度(偏航,俯仰),以提高每个角度的预测精度。
此外,我们对每个凝视角度使用两个单独的损失函数。每一种损失都由注视二值分类和回归组成。
最后,这两种损失通过网络反向传播,精确微调网络权重,提高网络泛化。
我们通过使用softmax层和交叉熵损失(cross-entropy loss)来执行gaze bin分类,以便网络以鲁棒的方式估计注视角的邻域。
基于所提出的损失函数和softmax层 (L2 loss+ cross-entropy loss+ softmax层),我们提出了一种新的网络(L2CS-Net)来预测无约束设置下的3D凝视向量。
最后,我们在两个流行的数据集MPIIGaze和Gaze360上评估了我们的网络的鲁棒性。L2CS-Net在MPIIGaze和Gaze360数据集上实现了SOAT的性能。

测试环境:

VS2019

.net framework 4.7.2

OpenCvSharp 4.8.0

Microsoft.ML.OnnxRuntime 1.16.3

效果:

实现部分代码:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using OpenCvSharp;namespace FIRC
{public partial class Form1 : Form{Mat src = new Mat();FaceDetector fd = new FaceDetector();public Form1(){InitializeComponent();}private void button1_Click(object sender, EventArgs e){OpenFileDialog openFileDialog = new OpenFileDialog();openFileDialog.Filter = "图文件(*.*)|*.jpg;*.png;*.jpeg;*.bmp";openFileDialog.RestoreDirectory = true;openFileDialog.Multiselect = false;if (openFileDialog.ShowDialog() == DialogResult.OK){src = Cv2.ImRead(openFileDialog.FileName);pictureBox1.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(src);}}private void button2_Click(object sender, EventArgs e){if(pictureBox1.Image==null){return;}var results = fd.Inference(src);var resultMat = fd.DrawImage(src,results);pictureBox2.Image= OpenCvSharp.Extensions.BitmapConverter.ToBitmap(resultMat); //Mat转Bitmap}private void Form1_Load(object sender, EventArgs e){fd.LoadWeights(Application.StartupPath+"\\weights\\yolov8n-face.onnx", Application.StartupPath + "\\weights\\l2cs_net_1x3x448x448.onnx");}private void btn_video_Click(object sender, EventArgs e){}}
}

视频演示:

bilibili.com/video/BV19t4y1f7rN/

源码地址:

参考文献:

1.https://blog.csdn.net/gaoqing_dream163/article/details/132149150

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/590591.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C/C++面向对象(OOP)编程-回调函数详解(回调函数、C/C++异步回调、函数指针)

本文主要介绍回调函数的使用,包括函数指针、异步回调编程、主要通过详细的例子来指导在异步编程和事件编程中如何使用回调函数来实现。 🎬个人简介:一个全栈工程师的升级之路! 📋个人专栏:C/C精进之路 &…

再见2023,你好2024!

大家好,我是老三,本来今天晚上打算出去转一转,陆家嘴打车实在太艰难了,一公里多的路,司机走了四十分钟,还没到,再加上身体不适,咳嗽地比较厉害,所以还是宅在酒店里&#…

用通俗易懂的方式讲解大模型:使用 Docker 部署大模型的训练环境

之前给大家介绍了主机安装方式——如何在 Ubuntu 操作系统下安装部署 AI 环境,但随着容器化技术的普及,越来越多的程序以容器的形式进行部署,通过容器的方式不仅可以简化部署流程,还可以随时切换不同的环境。 实际上很多云服务厂…

Java ArrayList在遍历时删除元素

文章目录 1. Arrays.asList()获取到的ArrayList只能遍历,不能增加或删除元素2. java.util.ArrayList.SubList有实现add()、remove()方法3. 遍历集合时对元素重新赋值、对元素中的属性赋值、删除元素、新增元素3.1 普通for循环3.2 增强for循环3.3 forEach循环3.4 str…

目标检测-Two Stage-Mask RCNN

文章目录 前言一、Mask RCNN的网络结构和流程二、Mask RCNN的创新点总结 前言 前文目标检测-Two Stage-Faster RCNN提到了Faster RCNN主要缺点是: ROI Pooling有两次量化操作,会引入误差影响精度 Mask RCNN针对这一缺点做了改进,此外Mask …

数据结构——顺序栈与链式栈的实现

目录 一、概念 1、栈的定义 2、栈顶 3、栈底 二、接口 1、可写接口 1)数据入栈 2)数据出栈 3)清空栈 2、只读接口 1)获取栈顶数据 2)获取栈元素个数 3)栈的判空 三、栈的基本运算 四、顺序栈&…

Linux实战:部署基于Postfix 与 Dovecot 的邮件系统

一、电子邮件系统简介 在电子邮件系统中,为用户收发邮件的服务器名为邮件用户代理(Mail User Agent,MUA),MTA (邮件传输代理)的工作职责是转发处理不同电子邮件服务供应商之间的邮件&#xff0…

目标检测 YOLOv5 - 推理时的数据增强

目标检测 YOLOv5 - 推理时的数据增强 flyfish 版本 YOLOv5 6.2 参考地址 https://github.com/ultralytics/yolov5/issues/303在训练时可以使用数据增强,在推理阶段也可以使用数据增强 在测试使用数据增强有个名字叫做Test-Time Augmentation (TTA) 实际使用中使…

PostgreSQL数据库的json操作

1.操作符 select json字段::json->key值 from order -- 对象域 select json字段::json->>key值 from order -- 文本 select json字段::json#>{key值} from order -- 对象域 select json字段::json#>>{key值} from order -- 文本对象域表示还能继续操作&#…

26、web攻防——通用漏洞SQL注入SqlmapOracleMongodbDB2

文章目录 OracleMongoDBsqlmap SQL注入课程体系; 数据库注入:access、mysql、mssql、oracle、mongodb、postgresql等数据类型注入:数字型、字符型、搜索型、加密型(base63 json)等提交方式注入:get、post、…

ES6之生成器(Generator)

✨ 专栏介绍 在现代Web开发中,JavaScript已经成为了不可或缺的一部分。它不仅可以为网页增加交互性和动态性,还可以在后端开发中使用Node.js构建高效的服务器端应用程序。作为一种灵活且易学的脚本语言,JavaScript具有广泛的应用场景&#x…

如何使用Git进行代码版本管理

目录 建立仓库 分支管理 推送代码 问题 建立仓库 先在远程代码托管平台(如GitHub、GitLab等)上创建一个新的仓库 使用命令行或终端,进入你的本地项目目录 如果项目还没有使用Git进行版本控制,可以通过执行以下命令来初始…

Origin 2021软件安装包下载及安装教程

Origin 2021下载链接:https://docs.qq.com/doc/DUnJNb3p4VWJtUUhP 1.选中下载的压缩包,然后鼠标右键选择解压到"Origin 2021"文件夹 2.双击打开“Setup”文件夹 3.选中“Setup.exe”鼠标右键点击“以管理员身份运行” 4.点击“下一步" 5…

240101-5步MacOS自带软件无损快速导出iPhone照片

硬件准备: iphone手机Mac电脑数据线 操作步骤: Step 1: 找到并打开MacOS自带的图像捕捉 Step 2: 通过数据线将iphone与电脑连接Step 3:iphone与电脑提示“是否授权“? >>> “是“Step 4:左上角选择自己的设…

springboot3+vue3实现大文件分片上传和断点续传

大文件分片上传和断点续传 大文件分片上传是一种将大文件切分成小片段进行上传的策略。这种上传方式有以下几个主要原因和优势: 网络稳定性:大文件的上传需要较长时间,而网络连接可能会不稳定或中断。通过将文件切分成小片段进行上传&#xf…

低延时视频技术的应用场景和挑战

编者按 无线网络对人们的生活产生了巨大的影响,而5G技术的引入将彻底改变我们与世界互联互通的方式。在5G时代,实现万物互联离不开低延时技术的应用。 LiveVideoStackCon 2023 深圳站邀请到秒点科技的CEO扶凯,为大家分享低延时技术在物联网、…

【CF比赛记录】—— Good Bye 2023(A、B、C)

🌏博客主页:PH_modest的博客主页 🚩当前专栏:CF比赛记录 💌其他专栏: 🔴每日一题 🟡 cf闯关练习 🟢 C语言跬步积累 🌈座右铭:广积粮,缓…

Big-endian与Little-endian详尽说明

大端与小端存储详尽说明 大端与小端存储详尽说明 大端与小端存储详尽说明一. 什么是字节序二. 什么是大端存储模式三. 什么是小端存储模式四. 大小端各自的特点五. 为什么会有大小端模式之分六. 为什么要注意大小端问题六. 大小端判定程序七. 大端小端的转换1)16位大…

详解Vue3中的鼠标事件mousedown、mouseup和contextmenu

本文主要介绍Vue3中的常见鼠标事件mousedown、mouseup和contextmenu。 目录 一、mousedown——鼠标按下事件二、mouseup——鼠标弹起事件三、contextmenu——页面菜单 下面是Vue 3中常用的鼠标事件mousedown、mouseup和contextmenu的详解。 一、mousedown——鼠标按下事件 mo…

当你的电脑在安装Windows更新后出现问题时怎么办,这里提供办法

Windows更新通常会为你的电脑带来错误修复、安全补丁和新功能,但它们也可能会带来性能下降甚至引发恐慌的数据丢失等问题,从而适得其反。如果你在安装更新后发现了一些奇怪之处,你可以将其回滚,尝试重新启动。 Windows更新主要有两种:质量更新和功能更新。高质量的更新包…