人员着装识别算法 yolo

人员着装识别系统通过yolo网络模型识别算法,人员着装识别系统算法通过现场安装的摄像头识别工厂人员及工地人员是否按要求穿戴着装,实时监测人员的着装情况,并进行相关预警。目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种 one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。

首先先介绍一下滑动窗口技术,这对我们理解Yolo算法是有帮助的。采用滑动窗口的目标检测算法思路非常简单,它将检测问题转化为了图像分类问题。其基本原理就是采用不同大小和比例(宽高比)的窗口在整张图片上以一定的步长进行滑动,然后对这些窗口对应的区域做图像分类,这样就可以实现对整张图片的检测了,如下图3所示,如DPM就是采用这种思路。但是这个方法有致命的缺点,就是你并不知道要检测的目标大小是什么规模,所以你要设置不同大小和比例的窗口去滑动,而且还要选取合适的步长。但是这样会产生很多的子区域,并且都要经过分类器去做预测,这需要很大的计算量,所以你的分类器不能太复杂,因为要保证速度。解决思路之一就是减少要分类的子区域,这就是R-CNN的一个改进策略,其采用了selective search方法来找到最有可能包含目标的子区域(Region Proposal),其实可以看成采用启发式方法过滤掉很多子区域,这会提升效率。

在进行模型训练时,我们需要构造训练样本和设计损失函数,才能利用梯度下降对网络进行训练。将一幅图片输入到yolo模型中,对应的输出是一个7x7x30张量,构建标签label时对于原图像中的每一个网格grid都需要构建一个30维的向量。Yolo先使用ImageNet数据集对前20层卷积网络进行预训练,然后使用完整的网络,在PASCAL VOC数据集上进行对象识别和定位的训练。Yolo的最后一层采用线性激活函数,其它层都是Leaky ReLU。训练中采用了drop out和数据增强(data augmentation)来防止过拟合。


 

 

Adapter接口定义了如下方法:

public abstract void registerDataSetObserver (DataSetObserver observer)

Adapter表示一个数据源,这个数据源是有可能发生变化的,比如增加了数据、删除了数据、修改了数据,当数据发生变化的时候,它要通知相应的AdapterView做出相应的改变。为了实现这个功能,Adapter使用了观察者模式,Adapter本身相当于被观察的对象,AdapterView相当于观察者,通过调用registerDataSetObserver方法,给Adapter注册观察者。

public abstract void unregisterDataSetObserver (DataSetObserver observer)

通过调用unregisterDataSetObserver方法,反注册观察者。

public abstract int getCount () 返回Adapter中数据的数量。

public abstract Object getItem (int position)

Adapter中的数据类似于数组,里面每一项就是对应一条数据,每条数据都有一个索引位置,即position,根据position可以获取Adapter中对应的数据项。

public abstract long getItemId (int position)

获取指定position数据项的id,通常情况下会将position作为id。在Adapter中,相对来说,position使用比id使用频率更高。

public abstract boolean hasStableIds ()

hasStableIds表示当数据源发生了变化的时候,原有数据项的id会不会发生变化,如果返回true表示Id不变,返回false表示可能会变化。Android所提供的Adapter的子类(包括直接子类和间接子类)的hasStableIds方法都返回false。

public abstract View getView (int position, View convertView, ViewGroup parent)

getView是Adapter中一个很重要的方法,该方法会根据数据项的索引为AdapterView创建对应的UI项。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/59016.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

<C++> 继承

1.继承的概念和定义 继承是面向对象其中的一个核心概念之一,继承允许一个类(称为子类或派生类)从另一个类(称为父类或基类)继承属性和行为,以便在子类中重用已有的代码并添加新的功能。通过继承&#xff0…

CVE-2023-36874 Windows错误报告服务本地权限提升漏洞分析

CVE-2023-36874 Windows错误报告服务本地权限提升漏洞分析 漏洞简介 Windows错误报告服务在提交错误报告前会创建wermgr.exe进程,而攻击者使用特殊手法欺骗系统创建伪造的wermgr.exe进程,从而以system权限执行代码。 影响版本 Windows10 1507 * Wind…

Python-pyqt不同窗口数据传输【使用静态函数】

文章目录 前言程序1:caogao1.py输入数据界面程序2:caogao2.py接收数据界面 程序3 :将输入数据界面和接收数据界面组合成一个总界面讲解 总结 前言 在编写pyqt 页面时有时候需要不同页面进行数据传输。本文讲解静态函数方法。直接看示例。 程…

FPGA VR摄像机-拍摄和拼接立体 360 度视频

本文介绍的是 FPGA VR 相机的第二个版本,第一个版本是下面这样: 第一版地址: ❝ https://hackaday.io/project/26974-vr-camera-fpga-stereoscopic-3d-360-camera ❞ 本文主要介绍第二版本,第二版本的 VR 摄像机,能够以…

Kotlin学习之密封类

Kotlin中的密封类: kotlin中的密封类,用关键词Sealed修饰,且还有一个规定:Sealed类的子类应该是Sealed类的嵌套类,或者应该在与Sealed类相同的文件中声明。 当我们想定义一个有相同父类,但是有不同子类的时候&#xf…

胡歌深夜发文:我对不起好多人

胡歌的微博又上了热搜。 8月29日01:18分,胡歌微博发文称:“我尽量保持冷静,我对不起好多人,我希望对得起这短暂的一生”,并配了一张自己胡子拉碴的图,右眼的伤疤清晰可见。 不少网友留言称“哥你又喝多了吗…

基于MATLAB的径向基函数插值(RBF插值)(一维、二维、三维)

基于MATLAB的径向基函数插值(RBF插值)(一维、二维、三维) 0 前言1 RBF思路2 1维RBF函数2.1 参数说明2.1.1 核函数选择2.1.2 作用半径2.1.3 多项式拟合2.1.4 误差项(光滑项) 3 2维RBF函数4 3维RBF函数 惯例声…

深入了解Nginx:高性能的开源Web服务器与反向代理

一、Nginx是什么 Nginx是一款轻量级的Web 服务器/反向代理服务器及电子邮件(IMAP/POP3)代理服务器,也可以作为负载均衡器和HTTP缓存服务器使用。它采用事件驱动、异步非阻塞的处理方式,能够处理大量并发连接和高流量负载&#xff…

【Selenium】chromedriver最新版本与Chrome自动更新版本不匹配问题

文章目录 一、查看chromedriver版本二、降级Chrome浏览器且禁止自动更新三、chromedriver下载配置四、测试 一、查看chromedriver版本 使用Selenium时需要下载chromedriver 1、首先查看我的Chrome浏览器版本已自动更新到116: 2、查找与之对应的chromedriver版本&am…

Elasticsearch Split和shrink API

背景: 尝试解决如下问题:单分片存在过多文档,超过lucene限制 分析 1.一般为日志数据或者OLAP数据,直接删除索引重建 2.尝试保留索引,生成新索引 - 数据写入新索引,查询时候包含 old_index,new_index 3.…

【【萌新的STM32学习-19-蜂鸣器实验】】

萌新的STM32学习-19-蜂鸣器实验 STM32在正点原子的视频中并未讲述关于蜂鸣器的实验,我们自己探究一下作为简单的HAL库入门 蜂鸣器每隔 300ms 响或者停一次。LED0 每隔 300ms 亮或者灭一次。LED0 亮的时候蜂鸣器不叫,而 LED0 熄灭的时候,蜂鸣…

ospf不规则区域划分和数据库表

华子目录 ospf不规则区域1.远离骨干的非骨干区域2.不连续骨干 不规则区域解决方案1.tunnel-点到点GRE2.ospf虚链路3.多进程双向重发布(推荐) ospf的数据库表 ospf不规则区域 1.远离骨干的非骨干区域 图示 2.不连续骨干 图示 不规则区域解决方案 …

二叉搜索树(C++)

二叉搜索树 概念二叉搜索树的应用二叉搜索树的实现K模型基本结构和函数声明接口实现①find——查找关键码②Insert——插入关键码③Erase——删除关键码(重点)时间复杂度 源码(整体)非递归递归 KV模型 在使用C语言写数据结构阶段时…

Leetcode:【448. 找到所有数组中消失的数字】题解

题目 给你一个含 n 个整数的数组 nums ,其中 nums[i] 在区间 [1, n] 内。请你找出所有在 [1, n] 范围内但没有出现在 nums 中的数字,并以数组的形式返回结果。 难度:简单 题目链接:448. 找到所有数组中消失的数字 示例1 输入&…

Mybatis1.1 环境准备

1.1 环境准备 数据库表(tb_brand)及数据准备实体类 Brand编写测试用例安装 MyBatisX 插件 数据库表(tb_brand)及数据准备 -- 删除tb_brand表 drop table if exists tb_brand; -- 创建tb_brand表 create table tb_brand (-- id 主…

C语言每日一练------Day(6)

本专栏为c语言练习专栏,适合刚刚学完c语言的初学者。本专栏每天会不定时更新,通过每天练习,进一步对c语言的重难点知识进行更深入的学习。 今日练习题关键字:整数转换 异或 💓博主csdn个人主页:小小unicorn…

第62步 深度学习图像识别:多分类建模(Pytorch)

基于WIN10的64位系统演示 一、写在前面 上期我们基于TensorFlow环境做了图像识别的多分类任务建模。 本期以健康组、肺结核组、COVID-19组、细菌性(病毒性)肺炎组为数据集,基于Pytorch环境,构建SqueezeNet多分类模型&#xff0…

【安装包】JDK 17安装教程

软件下载 软件:JDK版本:17语言:简体中文大小:151.24M安装环境:Win11/Win10/Win8/Win7硬件要求:CPU2.0GHz 内存4G(或更高)下载通道①百度网盘丨64位下载链接:https://pan.baidu.com/…

【爬虫】5.5 Selenium 爬取Ajax网页数据

目录 AJAX 简介 任务目标 创建Ajax网站 创建服务器程序 编写爬虫程序 AJAX 简介 AJAX(Asynchronous JavaScript And XML,异步 JavaScript 及 XML) Asynchronous 一种创建交互式、快速动态网页应用的网页开发技术通过在后台与服务器进行…

软考:中级软件设计师:邮件加密系统,网络安全保障,网络威胁与攻击,防火墙技术

软考:中级软件设计师:邮件加密系统 提示:系列被面试官问的问题,我自己当时不会,所以下来自己复盘一下,认真学习和总结,以应对未来更多的可能性 关于互联网大厂的笔试面试,都是需要细心准备的 &…