osg::DrawElements*系列函数及GL_QUAD_STRIP、GL_QUADS绘制四边形效率对比

目录

1. 前言

2. osg::DrawElements*系列函数用法说明

3. GL_QUADS、GL_QUAD_STRIP用法及不同点

4. 效率对比

5. 总结

6. 参考资料


1. 前言

      利用osg绘制图元,如:三角形、四边形等,一般用osg::PrimitiveSet类。其派生出了很多子类,如下图所示:

图1 

在开发中,用DrawElements*系列函数和osg::DrawArrays函数绘制图元比较多,本文以绘制四边形为例子,以osg::DrawElementsUShort、osg::DrawArrays来讲解怎样绘制四边形,及GL_QUAD_STRIP、GL_QUAD的不同、它们之间的效率。

2. osg::DrawElements*系列函数用法说明

      osg::DrawElements*系列函数osg::DrawElementsUShort、osg::DrawElementsUBye、osg::DrawElementsUIntosg::DrawElements派生,而osg::DrawElements对应OPenGL的glDrawElements函数,关于glDrawElements函数用法,请参考:

《glDrawElements用法说明》。

   osg::DrawArrays 类在直接从数组读取顶点数据时效果很好,没有间隙。 但是,当同一个顶点可以属于一个对象的多个面时,它就不那么有效了。 考虑这个例子:

图2 

一个立方体有八个顶点。 然而,从图中可以看出(我们正在考虑将一个立方体扫到一个平面上),一些顶点属于多个面。 如果我们构建一个包含 12 个三角形面的立方体(注:虽然是绘制四边形,但GPU等硬件在真正绘制时,是用两个三角形来拼出一个四边形的对于硬件来说绘制2个三角形比直接一个四边形效率更高,故6个四边形其实内部绘制是12个三角形绘制的),那么这些顶点将重复,而不是 8 个顶点的数组,我们将得到 36 个顶点的数组,其中大部分实际上是相同的顶点! 

      在OSG中,有类 osg::DrawElementsUInt、 osg::DrawElementsUByte和 osg::DrawElementsUShort,它们使用顶点索引数组作为数据,旨在解决上述问题。 索引数组存储描述几何体的面和其他元素的图元顶点的索引。 将这些类应用于立方体时,存储八个顶点的数据就足够了,这些顶点通过索引数组与面相关联。

   osg::DrawElements* 类型的类的设计方式与标准 std::vector 类的设计方式相同。 此代码可用于添加索引。如:

osg::ref_ptr<osg::DrawElementsUInt> de = new osg::DrawElementsUInt(GL_TRIANGLES);
de->push_back(0); 
de->push_back(1); 
de->push_back(2);
de->push_back(3); 
de->push_back(0); 
de->push_back(2); 

此代码定义图2中所示的立方体的正面。考虑另一个说明性的例子——八面体。

图3 

很有趣,因为它只包含六个顶点,但每个顶点已经在四个三角形面中了! 我们可以使用 osg::DrawArrays 创建一个包含 24 个顶点的数组来显示所有八个面。 然而,我们将采取不同的方式——我们将顶点存储在一个包含六个元素的数组中,并使用类 osg::DrawElementsUInt 生成面。

main.h

#ifndef     MAIN_H
#define     MAIN_H
#include<osg/Geometry>
#include<osg/Geode>
#include<osgUtil/SmoothingVisitor>
#include<osgViewer/Viewer>
#endif

 main.cpp

#include"main.h"
int main(int argc, char *argv[]){osg::ref_ptr<osg::Vec3Array> vertices = new osg::Vec3Array(6);(*vertices)[0].set( 0.0f,  0.0f,  1.0f);(*vertices)[1].set(-0.5f, -0.5f,  0.0f);(*vertices)[2].set( 0.5f, -0.5f,  0.0f);(*vertices)[3].set( 0.5f,  0.5f,  0.0f);(*vertices)[4].set(-0.5f,  0.5f,  0.0f);(*vertices)[5].set( 0.0f,  0.0f, -1.0f);osg::ref_ptr<osg::DrawElementsUInt> indices = new osg::DrawElementsUInt(GL_TRIANGLES, 24);(*indices)[ 0] = 0; (*indices)[ 1] = 1; (*indices)[ 2] = 2;(*indices)[ 3] = 0; (*indices)[ 4] = 4; (*indices)[ 5] = 1;(*indices)[ 6] = 4; (*indices)[ 7] = 5; (*indices)[ 8] = 1;(*indices)[ 9] = 4; (*indices)[10] = 3; (*indices)[11] = 5;(*indices)[12] = 3; (*indices)[13] = 2; (*indices)[14] = 5;(*indices)[15] = 1; (*indices)[16] = 5; (*indices)[17] = 2;(*indices)[18] = 3; (*indices)[19] = 0; (*indices)[20] = 2;(*indices)[21] = 0; (*indices)[22] = 3; (*indices)[23] = 4;osg::ref_ptr<osg::Geometry> geom = new osg::Geometry;geom->setVertexArray(vertices.get());geom->addPrimitiveSet(indices.get());osgUtil::SmoothingVisitor::smooth(*geom);osg::ref_ptr<osg::Geode> root = new osg::Geode;root->addDrawable(geom.get());osgViewer::Viewer viewer;viewer.setSceneData(root.get());return viewer.run();
}

上述代码先创建一个有六个顶点的数组,然后使用指针解引用操作和 operator [] 操作符寻址其坐标向量 赋值。别忘了 osg::Array 是 std::vector 的派生类。然后为面创建为顶点索引列表。面将是三角形的,共有 8 个,这意味着索引列表应包含 24 个元素。 面索引按顺序进入此数组:例如,面 0 由顶点 0、1 和 2 组成; 面 1 - 顶点 0、4 和 1; 面 2 - 顶点 4、5 和 1,依此类推。 顶点按逆时针顺序列出,如果你看正面(见图3)。

3. GL_QUADS、GL_QUAD_STRIP用法及不同点

      GL_QUADS:绘制一系列四边形,首先使用顶点V0、V1、V2、V3绘制第1个四边形,然后是V4、V5、V6、V7绘制第2个四边形,接下来以次类推,如果顶点个数n不是4的倍数,最后1个、2个、3个顶点被忽略。注意:如果四边形之间的顶点坐标不相同,则这些四边形是分离的,如下:

图4 

GL_QUAD_STRIP:绘制一系列四边形,首先使用顶点V0、V1、V3、V2绘制第1个四边形,接着是V2、V3、V5、V4,然后是V4、V5、V7、V6。以此类推。顶点个数n至少要大于4,否则不会绘制任何四边形。如果n是奇数,最后一点顶点就被忽略。如下:

图5 

GL_QUAD_STRIP画出一组共享边的四边形。对于较小的模型,共享边的差异可以忽略不计;对于较大的模型,使用GL_QUAD_STRIP意味着显著地节省了计算次数。从第一对顶点开始,相邻的两对定点被定义成一个四边形。定点 2n-1、2n、2n+2和2n+1定义了第n个四边形。有|V|/2-1个四边形将被绘制,|V|代表顶点的个数,如果|V|小于4,OpenGL将不会绘制任何图形。所有四边形将以逆时针顺序排列,互相连接形成四边形带。注意用来构成四边形的顶点顺序和使用GL_QUADS时的顺序是不同的,每一个四边形的第二对定点被逆向使用,以使每一个四边形顶点能被一致地定义。  

图6 

4. 效率对比

       本节以osg::DrawElements*系列函数及GL_QUAD_STRIP、GL_QUADS绘制四边形,以看看它们之间的效率差别。绘制10个连接的立方体如下:

图7

代码如下:

// QUAD_STRIP.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。
//#include<osgViewer/Viewer>
#include<osgViewer/ViewerEventHandlers>
#include<osg/PolygonMode>
#include<iostream>
//const auto g_quadCount = 1000000;
const auto g_quadCount = 10;osg::ref_ptr<osg::Geode> createQuads3()
{osg::ref_ptr<osg::Geode> spGeode = new osg::Geode;// Geode是Node的派生类,为了绘制图元的管理类osg::ref_ptr<osg::Geometry> spGeometory = new osg::Geometry;spGeode->addChild(spGeometory);osg::ref_ptr<osg::Vec3Array> spCoordsArray = new osg::Vec3Array;auto offset = 0;int nGeomeryCount = 0;while (true){// 前面spCoordsArray->push_back(osg::Vec3d(-1.0, -1.0 + offset, -1.0));  // 前左下顶点  V1spCoordsArray->push_back(osg::Vec3d(1.0, -1.0 + offset, -1.0));   // 前右下顶点  V2spCoordsArray->push_back(osg::Vec3d(-1.0, -1.0 + offset, 1.0));   // 前左上顶点  V3。注意:前左上顶点才是第3个顶点,而不是前右上顶点 spCoordsArray->push_back(osg::Vec3d(1.0, -1.0 + offset, 1.0));    // 前右上顶点  V4spCoordsArray->push_back(osg::Vec3d(-1.0, 1.0 + offset, 1.0));    // V5spCoordsArray->push_back(osg::Vec3d(1.0, 1.0 + offset, 1.0));     // V6spCoordsArray->push_back(osg::Vec3d(-1.0, 1.0 + offset, -1.0));   // V7spCoordsArray->push_back(osg::Vec3d(1.0, 1.0 + offset, -1.0));    // V8spCoordsArray->push_back(osg::Vec3d(-1.0, -1.0 + offset, -1.0));    // V9spCoordsArray->push_back(osg::Vec3d(1.0, -1.0 + offset, -1.0));    // V10offset += 2; // y轴方向上宽度为2nGeomeryCount++;if (g_quadCount == nGeomeryCount){break;}}spGeometory->setVertexArray(spCoordsArray);spGeometory->addPrimitiveSet(new osg::DrawArrays(GL_QUAD_STRIP, 0, spCoordsArray->size()));return spGeode;
}osg::ref_ptr<osg::Geode> createQuads2()
{osg::ref_ptr<osg::Geode> spGeode = new osg::Geode;// Geode是Node的派生类,为了绘制图元的管理类osg::ref_ptr<osg::Geometry> spGeometory = new osg::Geometry;spGeode->addChild(spGeometory);//spGeode->addDrawable(spGeometory);// 可以将addChild替换为这句。osg::ref_ptr<osg::Vec3Array> spCoordsArray = new osg::Vec3Array;auto totalVertCount = g_quadCount * 8;osg::DrawElementsUShort* pDrawElemt = new osg::DrawElementsUShort(GL_QUADS, 24 * g_quadCount); // 立方体共8个顶点,每个顶点重复了3次auto iVertCount = 0;for (auto offset = 0; ; offset += 2){spCoordsArray->push_back(osg::Vec3d(1.0, -1.0 + offset, -1.0));  // 0spCoordsArray->push_back(osg::Vec3d(1.0, -1.0 + offset, 1.0));   // 1spCoordsArray->push_back(osg::Vec3d(-1.0, -1.0 + offset, 1.0));    // 2spCoordsArray->push_back(osg::Vec3d(-1.0, -1.0 + offset, -1.0));   // 3iVertCount += 4;if (iVertCount >= totalVertCount){break;}}for (auto guadIndex = 0; guadIndex < g_quadCount; ++guadIndex){auto nElementIndex = guadIndex * 24;// 右侧面auto temp = 4 * guadIndex;(*pDrawElemt)[0 + nElementIndex] = 0 + temp;(*pDrawElemt)[1 + nElementIndex] = 4 + temp;(*pDrawElemt)[2 + nElementIndex] = 5 + temp;(*pDrawElemt)[3 + nElementIndex] = 1 + temp;// 前面if (0 == guadIndex % 2)// 前一个立方体的后面和后一个立方体的前面重合,故只绘制一个{(*pDrawElemt)[4 + nElementIndex] = 0 + temp;(*pDrawElemt)[5 + nElementIndex] = 1 + temp;(*pDrawElemt)[6 + nElementIndex] = 2 + temp;(*pDrawElemt)[7 + nElementIndex] = 3 + temp;}// 左侧面(*pDrawElemt)[8 + nElementIndex] = 3 + temp;(*pDrawElemt)[9 + nElementIndex] = 7 + temp;(*pDrawElemt)[10 + nElementIndex] = 6 + temp;(*pDrawElemt)[11 + nElementIndex] = 2 + temp;// 上面(*pDrawElemt)[12 + nElementIndex] = 1 + temp;(*pDrawElemt)[13 + nElementIndex] = 5 + temp;(*pDrawElemt)[14 + nElementIndex] = 6 + temp;(*pDrawElemt)[15 + nElementIndex] = 2 + temp;// 后面(*pDrawElemt)[16 + nElementIndex] = 4 + temp;(*pDrawElemt)[17 + nElementIndex] = 5 + temp;(*pDrawElemt)[18 + nElementIndex] = 6 + temp;(*pDrawElemt)[19 + nElementIndex] = 7 + temp;// 底面(*pDrawElemt)[20 + nElementIndex] = 0 + temp;(*pDrawElemt)[21 + nElementIndex] = 4 + temp;(*pDrawElemt)[22 + nElementIndex] = 7 + temp;(*pDrawElemt)[23 + nElementIndex] = 3 + temp;}spGeometory->setVertexArray(spCoordsArray);spGeometory->addPrimitiveSet(pDrawElemt);return spGeode;
}osg::Geode* createQuads1()
{auto pGeode = new osg::Geode;auto pGeomery = new osg::Geometry;pGeode->addChild(pGeomery);auto spCoordsArray = new osg::Vec3Array;auto offset = 0;int nGeomeryCount = 0;while (true){// 右侧面spCoordsArray->push_back(osg::Vec3d(1.0, -1.0 + offset, -1.0));  // 前右下顶点spCoordsArray->push_back(osg::Vec3d(1.0, 1.0 + offset, -1.0));   // 后右下顶点spCoordsArray->push_back(osg::Vec3d(1.0, 1.0 + offset, 1.0));    // 后右上顶点 spCoordsArray->push_back(osg::Vec3d(1.0, -1.0 + offset, 1.0));   // 前右上顶点// 前面spCoordsArray->push_back(osg::Vec3d(1.0, -1.0 + offset, -1.0));  // 右下顶点spCoordsArray->push_back(osg::Vec3d(1.0, -1.0 + offset, 1.0));   // 右上顶点spCoordsArray->push_back(osg::Vec3d(-1.0, -1.0 + offset, 1.0));  // 左上顶点 spCoordsArray->push_back(osg::Vec3d(-1.0, -1.0 + offset, -1.0)); // 左下顶点// 左侧面spCoordsArray->push_back(osg::Vec3d(-1.0, -1.0 + offset, -1.0));  // 前左下顶点spCoordsArray->push_back(osg::Vec3d(-1.0, -1.0 + offset, 1.0));   // 前左上顶点spCoordsArray->push_back(osg::Vec3d(-1.0, 1.0 + offset, 1.0));    // 后左上顶点 spCoordsArray->push_back(osg::Vec3d(-1.0, 1.0 + offset, -1.0));   // 后左下顶点// 后面spCoordsArray->push_back(osg::Vec3d(1.0, 1.0 + offset, -1.0));    // 后下顶点spCoordsArray->push_back(osg::Vec3d(1.0, 1.0 + offset, 1.0));     // 后上顶点spCoordsArray->push_back(osg::Vec3d(-1.0, 1.0 + offset, 1.0));    // 左上顶点 spCoordsArray->push_back(osg::Vec3d(-1.0, 1.0 + offset, -1.0));   // 左下顶点// 上面spCoordsArray->push_back(osg::Vec3d(1.0, -1.0 + offset, 1.0));     // 前右顶点spCoordsArray->push_back(osg::Vec3d(1.0, 1.0 + offset, 1.0));      // 后右顶点spCoordsArray->push_back(osg::Vec3d(-1.0, 1.0 + offset, 1.0));     // 后左顶点 spCoordsArray->push_back(osg::Vec3d(-1.0, -1.0 + offset, 1.0));    // 前左顶点// 底面spCoordsArray->push_back(osg::Vec3d(1.0, -1.0 + offset, -1.0));     // 前右顶点spCoordsArray->push_back(osg::Vec3d(1.0, 1.0 + offset, -1.0));     // 后右顶点spCoordsArray->push_back(osg::Vec3d(-1.0, 1.0 + offset, -1.0));    // 后左顶点 spCoordsArray->push_back(osg::Vec3d(-1.0, -1.0 + offset, -1.0));   // 前左顶点offset += 2; // y轴方向上宽度为2nGeomeryCount++;if (g_quadCount == nGeomeryCount){break;}}pGeomery->setVertexArray(spCoordsArray);pGeomery->addPrimitiveSet(new osg::DrawArrays(GL_QUADS, 0, spCoordsArray->size()));return pGeode;
}int main()
{auto pRoot = new osg::Group;auto pGeode = createQuads3();pGeode->getOrCreateStateSet()->setAttribute(new osg::PolygonMode(osg::PolygonMode::FRONT_AND_BACK, osg::PolygonMode::LINE));pGeode->getOrCreateStateSet()->setMode(GL_LIGHTING, osg::StateAttribute::OFF);pRoot->addChild(pGeode);auto pViewer = new osgViewer::Viewer;auto pStatsHander = new osgViewer::StatsHandler;pViewer->addEventHandler(pStatsHander);pViewer->setSceneData(pRoot);pViewer->run();
}

 当g_quadCount为10时,把第195行代码分别换成createQuads1、createQuads2、createQuads3,在视景器窗体中连续按4次键盘小写s键时,createQuads1函数即用osg::DrawArrays及GL_QUADS各性能指标如下:

图8 osg::DrawArrays及GL_QUADS绘制10个立方体时的各性能指标

createQuads2函数即用osg::DrawElementsUShort及GL_QUADS各性能指标如下:

图9 osg::DrawElementsUShort及GL_QUADS绘制10个立方体时的各性能指标 

createQuads3函数即用osg::DrawArrays及GL_QUAD_STRIP各性能指标如下: 

图10 osg::DrawArrays及GL_QUAD_STRIP绘制10个立方体时的各性能指标  

当绘制的立方体个数为10即立方体个数很少时,这三者在GPU占用、帧率、绘制、裁剪等方面差别不是很大。

当将g_quadCount改为1000000时, createQuads1函数即用osg::DrawArrays及GL_QUADS各性能指标如下:

图11 osg::DrawArrays及GL_QUADS绘制1000000个立方体时的各性能指标 

createQuads2函数即用osg::DrawElementsUShort及GL_QUADS各性能指标如下: 

图12 osg::DrawElementsUShort及GL_QUADS绘制1000000个立方体时的各性能指标  

createQuads3函数即用osg::DrawArrays及GL_QUAD_STRIP各性能指标如下: 

图13 osg::DrawArrays及GL_QUAD_STRIP绘制100000个立方体时的各性能指标  

当要绘制的立方体很多时, 采用osg::DrawArrays和GL_QUAD_STRIP明显比osg::DrawElementsUShort及osg::DrawArrays和GL_QUADS效率高很多、GPU占用大大减少、帧率高;而osg::DrawElementsUShort和GL_QUADS比osg::DrawArrays和GL_QUADS效率高一些,因为osg::DrawElementsUShort采取的是点的索引,剔除了重复,所以效率会高点。

5. 总结

  • osg::DrawElements*系列函数采用点的索引绘制图元,而osg::DrawArrays采用点的数组来绘制图元,当点个数很多时,前者效率高些。
  • 当点个数是巨大量时,GL_QUAD_STRIP比采用GL_QUADS效率高很多。同样地GL_TRIANGLE_STRIP绘制三角形时效率比GL_TRIANGLES高。
  • 上述代码main函数中用到了统计和性能相关的各项参数的osgViewer::StatsHandler类,关于该类的用法,请参考:浅谈osgViewer::StatsHandler、osg::Stats类的用法

6. 参考资料

【1】:OpenGL编程指南(原书第7版)。

【2】:理解GL_QUAD_STRIP。

【3】:OSG几何开发快速教程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/588785.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用docker build构建image

文章目录 环境步骤准备例1&#xff1a;基本用法例2&#xff1a;缓存layer例3&#xff1a;Multi-stage例4&#xff1a;Mountcache mountbind mount 例5&#xff1a;参数例6&#xff1a;Export文件例7&#xff1a;测试 参考 环境 RHEL 9.3Docker Community 24.0.7 步骤 在Dock…

Cookie、Session

一、会话管理 1、什么是会话&#xff1f; 会话是客户端和服务端之间进行多次的请求和响应。 相当于两个人聊天&#xff0c;进行了多次的问答。 对多次问答的管理叫做会话管理&#xff0c;管理的东西是通信状态。 2、什么是状态&#xff1f; 举例&#xff1a; 小明去校园食堂…

常用设计模式全面总结版(JavaKotlin)

这篇文章主要是针对之前博客的下列文章的总结版本: 《设计模式系列学习笔记》《Kotlin核心编程》笔记:设计模式【Android知识笔记】FrameWork中的设计模式主要为了在学习了 Kotlin 之后,将 Java 的设计模式实现与 Kotin 的实现放在一起做一个对比。 一、创建型模式 单例模…

以太网二层交换机实验

实验目的&#xff1a; &#xff08;1&#xff09;理解二层交换机的原理及工作方式&#xff1b; &#xff08;2&#xff09;利用交换机组建小型交换式局域网。 实验器材&#xff1a; Cisco packet 实验内容&#xff1a; 本实验可用一台主机去ping另一台主机&#xff0c;并…

Baumer工业相机堡盟工业相机如何通过NEOAPI SDK设置相机的图像剪切(ROI)功能(C++)

Baumer工业相机堡盟工业相机如何通过NEOAPI SDK设置相机的图像剪切&#xff08;ROI&#xff09;功能&#xff08;C&#xff09; Baumer工业相机Baumer工业相机的图像剪切&#xff08;ROI&#xff09;功能的技术背景CameraExplorer如何使用图像剪切&#xff08;ROI&#xff09;功…

Python武器库开发-武器库篇之Git的分支使用(三十九)

武器库篇之Git的分支使用(三十九) Git分支是一种用于在项目中并行开发和管理代码的功能。分支允许开发人员在不干扰主要代码的情况下创建新的代码版本&#xff0c;以便尝试新功能、修复错误或独立开发功能。一般正常情况下&#xff0c;开发人员开发一个软件&#xff0c;会有两…

HarmonyOS4.0系统性深入开发07创建一个ArkTS卡片

创建一个ArkTS卡片 在已有的应用工程中&#xff0c;创建ArkTS卡片&#xff0c;具体操作方式如下。 创建卡片。 根据实际业务场景&#xff0c;选择一个卡片模板。 在选择卡片的开发语言类型&#xff08;Language&#xff09;时&#xff0c;选择ArkTS选项&#xff0c;然后单…

nodejs+vue+微信小程序+python+PHP技术的健康信息网站-计算机毕业设计推荐

3.2 功能性需求分析 健康信息网站为会员提供健康信息服务的系统&#xff0c;管理员通过登录系统&#xff0c;管理会员信息、健康咨询、健康知识、健康档案、健康养生、健康信息的搜索、健康资讯等。需要学习的会员浏览健康信息网站&#xff0c;查询所有的健康信息&#xff0c;可…

【Java EE初阶三 】线程的状态与安全(下)

3. 线程安全 线程安全&#xff1a;某个代码&#xff0c;不管它是单个线程执行&#xff0c;还是多个线程执行&#xff0c;都不会产生bug&#xff0c;这个情况就成为“线程安全”。 线程不安全&#xff1a;某个代码&#xff0c;它单个线程执行&#xff0c;不会产生bug&#xff0c…

七:Day01_Java9—16新特性

第一章 JDK9 新特性 jdk9是新特性最多的&#xff0c;因为jdk8是一个稳定版本。 1、JDK9新特性概述 模块系统 &#xff08;Module System&#xff09; Java9最大特性。它提供了类似于OSGI框架的功能&#xff0c;模块之间存在相互的依赖关系&#xff0c;可以导出一个公共的API…

YOLOv8改进 | 2023注意力篇 | iRMB倒置残差块注意力机制(轻量化注意力机制)

一、本文介绍 本文给家大家带来的改进机制是iRMB&#xff0c;其是在论文Rethinking Mobile Block for Efficient Attention-based Models种提出&#xff0c;论文提出了一个新的主干网络EMO(后面我也会教大家如何使用该主干&#xff0c;本文先教大家使用该文中提出的注意力机制…

【Java进阶篇】什么是UUID,能不能保证唯一?

什么是UUID&#xff0c;能不能保证唯一? ✔️典型解析✔️优缺点 ✔️各个版本实现✔️V1.基于时间戳的UUID✔️V2.DCE(Distributed Computing Environment)安全的UUID✔️V3.基于名称空间的UUID(MD5)✔️V4.基于随机数的UUID✔️V5.基于名称空间的UUID(SHA1)✔️各个版本总结…

学生管理系统(vue + springboot)

学生管理系统&#xff08;vuespringboot&#xff09;资源-CSDN文库 项目介绍 这是一个采用前后端分离开发的项目&#xff0c;前端采用 Vue 开发、后端采用 Spring boot Mybatis 开发。 项目部署 ⭐️如果你有 docker 的话&#xff0c;直接 docker compose up 即可启动&#…

SpringBoot入门指南(学习笔记)

概述 Springboot是Spring的一个子项目&#xff0c;用于快速构建Spring应用程序 入门 ①创建SpringBoot工程 ②编写Controller RestController public class HelloContoller {RequestMapping("/hello")public String hello() {return "hello";} }③运行…

golang锁源码【只有关键逻辑】

条件锁 type Cond struct {L Lockernotify notifyList } type notifyList struct {wait uint32 //表示当前 Wait 的最大 ticket 值notify uint32 //表示目前已唤醒的 goroutine 的 ticket 的最大值lock uintptr // key field of the mutexhead unsafe.Pointer //链表头…

论文解读:Coordinate Attention for Efficient Mobile Network Design(CVPR2021)

论文前言 原理其实很简单&#xff0c;但是论文作者说得很抽象&#xff0c;时间紧的建议直接看3.1中原理简述CBMA、原理简述CBMA以及3.2中原理简述coordinate attention block即可。 Abstract 最近关于mobile network设计的研究已经证明了通道注意(例如&#xff0c;the Squee…

23. 一维数组

写在前面&#xff1a; 今天是2023年12月31日&#xff0c;也是整个2023年的最后一天。我在CSDN上只有短短几个月的时光&#xff0c;但非常感谢大家的支持&#xff0c;作为一名刚刚大一的大学生呢&#xff0c;学习编程&#xff0c;学习写博客是很重要的事&#xff0c;所以在新的…

翻页的电子画册如何制作

​在过去&#xff0c;一本精美的画册往往需要大量的人力物力去印刷、装帧、运输。而现在&#xff0c;只需一台电脑、一个网址和一个创意&#xff0c;就可以轻松制作出一本电子画册。这种变化不仅降低了成本&#xff0c;还带来了更多的便利性和灵活性。 首先&#xff0c;你需要选…

网络故障排查和流量分析利器-Tcpdump命令

Tcpdump是一个在Unix/Linux系统上广泛使用的命令行网络抓包工具。它能够捕获经过网络接口的数据包&#xff0c;并将其以可读的格式输出到终端或文件中。Tcpdump是一个强大的命令行工具&#xff0c;能够捕获和分析网络数据包&#xff0c;为网络管理员和安全专业人员提供了深入了…

【网络面试(6)】IP协议对网络包的转发

在前面的博客中&#xff0c;我们提到过&#xff0c;网络传输的报文是有真实的数据包和一些头部组成&#xff0c;目前我们了解的头部就有TCP头、IP头、MAC头&#xff0c;而且这三个头部信息都是在应用程序委托给协议栈之后&#xff0c;被写入的相关信息&#xff0c;这些头部都是…