最优化方法Python计算:无约束优化应用——神经网络回归模型

人类大脑有数百亿个相互连接的神经元(如下图(a)所示),这些神经元通过树突从其他神经元接收信息,在细胞体内综合、并变换信息,通过轴突上的突触向其他神经元传递信息。我们在博文《最优化方法Python计算:无约束优化应用——逻辑回归模型》中讨论的逻辑回归模型(如下图(b)所示)与神经元十分相似,由输入端接收数据 x = ( x 1 x 2 ⋮ x n ) \boldsymbol{x}=\begin{pmatrix} x_1\\x_2\\\vdots\\x_n \end{pmatrix} x= x1x2xn ,作加权和 ∑ i = 1 n w i x i \sum\limits_{i=1}^nw_ix_i i=1nwixi加上偏移量 b b b,即 ∑ i = 1 n w i x i + b \sum\limits_{i=1}^nw_ix_i+b i=1nwixi+b,用逻辑函数将其映射到区间 ( 0 , 1 ) (0,1) (0,1)内,然后将如此变换所得的信息 y y y输出。
在这里插入图片描述
这启发人们将诸多逻辑回归模型分层连接起来,构成人工神经网络,创建出多层感应模型。下图展示了一个包括输入层、输出层和两个隐藏层(图中阴影部分)的人工神经网络。图中,黑点表示数据节点,圆圈表示人工神经元的处理节点。
在这里插入图片描述
记逻辑函数 sigmoid ( x ) = 1 1 + e − x = φ ( x ) \text{sigmoid}(x)=\frac{1}{1+e^{-x}}=\varphi(x) sigmoid(x)=1+ex1=φ(x)。设多层感应模型的输入数据为 n n n维向量 x = ( x 1 x 2 ⋮ x n ) \boldsymbol{x}=\begin{pmatrix} x_1\\x_2\\\vdots\\x_n \end{pmatrix} x= x1x2xn 。不算输入层,模型连同输出层及隐藏层共有 l l l层。记 m 0 = n m_0=n m0=n,第 i i i层( 0 < i ≤ l 0<i\leq l 0<il)含有 m i m_i mi个神经元。于是,相邻的两层,第 i − 1 i-1 i1和第 i i i之间共有 ( m i − 1 + 1 ) m i (m_{i-1}+1)m_{i} (mi1+1)mi个待定参数。因此,模型具有
p = ∑ i = 1 l ( m i − 1 + 1 ) m i p=\sum_{i=1}^l(m_{i-1}+1)m_i p=i=1l(mi1+1)mi
个待定参数,组织成 p p p维向量 w = ( w 1 w 2 ⋮ w p ) \boldsymbol{w}=\begin{pmatrix} w_1\\w_2\\\vdots\\w_p \end{pmatrix} w= w1w2wp 。设 k 0 = 0 k_0=0 k0=0,对 1 < i ≤ l 1<i\leq l 1<il k i = ∑ t = 0 i − 1 ( m t + 1 ) m t + 1 k_i=\sum\limits_{t=0}^{i-1}(m_{t}+1)m_{t+1} ki=t=0i1(mt+1)mt+1,记 ( m i − 1 − 1 ) × m i (m_{i-1}-1)\times m_i (mi11)×mi矩阵
w i = ( w k i + 1 ⋯ w k i + ( m i − 1 + 1 ) ( m i − 1 ) + 1 ⋮ ⋱ ⋮ w k i + ( m i − 1 + 1 ) ⋯ w k i + ( m i − 1 + 1 ) m i ) , i = 1 , 2 ⋯ , l \boldsymbol{w}_i=\begin{pmatrix} w_{k_i+1}&\cdots&w_{k_i+(m_{i-1}+1)(m_i-1)+1}\\ \vdots&\ddots&\vdots\\ w_{k_i+(m_{i-1}+1)}&\cdots&w_{k_i+(m_{i-1}+1)m_i} \end{pmatrix}, i=1,2\cdots,l wi= wki+1wki+(mi1+1)wki+(mi1+1)(mi1)+1wki+(mi1+1)mi ,i=1,2,l
定义函数
F ( w ; x ) = φ ( ( ⋯ φ ⏟ l ( ( x ⊤ , 1 ) w 1 ) , 1 ) , ⋯ ) , 1 ) w l ) . F(\boldsymbol{w};\boldsymbol{x})=\underbrace{\varphi((\cdots\varphi}_l((\boldsymbol{x}^\top,1)\boldsymbol{w}_1),1),\cdots),1)\boldsymbol{w}_l). F(w;x)=l φ((φ((x,1)w1),1),),1)wl).
该函数反映了数据从输入层到输出层的传输方向,称为前向传播函数,作为多层感应模型的拟合函数。按此定义,我们构建如下的多层感应模型类

import numpy as np												#导入numpy
class MLPModel(LogicModel):										#多层感应模型def construct(self, X, hidden_layer_sizes):					#确定网络结构if len(X.shape)==1:										#计算输入端节点数k = 1else:k = X.shape[1]self.layer_sizes = (k,)+hidden_layer_sizes+(1,)  def patternlen(self):										#模式长度p = 0l = len(self.layer_sizes)								#总层数for i in range(l-1):									#逐层累加m = self.layer_sizes[i]n = self.layer_sizes[i+1]p += (m+1)*nreturn pdef F(self, w, x):											#拟合函数l = len(self.layer_sizes)								#总层数m, n = self.layer_sizes[0],self.layer_sizes[1]k = (m+1)*n												#第0层参数个数W = w[0:k].reshape(m+1,n)								#0层参数折叠为矩阵z = LogicModel.F(self, W, x)							#第1层的输入for i in range(1, l-1):									#逐层计算m = self.layer_sizes[i]								#千层节点数n = self.layer_sizes[i+1]							#后层节点数W = w[k:k+(m+1)*n].reshape(m+1,n)					#本层参数矩阵z = np.hstack((z, np.ones(z.shape[0]).				#本层输入矩阵reshape(z.shape[0], 1)))z = LogicModel.F(self, W, z)						#下一层输入k += (m+1)*n										#下一层参数下标起点y = z.flatten()											#展平输出return ydef fit(self, X, Y, w = None, hidden_layer_sizes = (100,)):	#重载训练函数self.construct(X, hidden_layer_sizes)LogicModel.fit(self, X, Y, w)
class MLPRegressor(Regression, MLPModel):'''神经网络回归模型'''

MLPModel继承了LogicModel类(详见博文《最优化方法Python计算:无约束优化应用——逻辑回归模型》)在MLPModel中除了重载模式长度计算函数patternlen、拟合函数F和训练函数fit外,增加了一个LogicModel类所没有的对象函数construct,用来确定神经网络的结构:有少层,各层有多少个神经元。
具体而言,第3~8行的construct函数,利用传递给它的输入矩阵X和隐藏层结构hidden_layer_sizes,这是一个元组,计算神经网络的各层结构。第4~7行的if-else分支按输入数据X的形状确定输入层的节点数k。第8行将元组(k,1)和(1,)分别添加在hidden_layer_sizes的首尾两端,即确定了网络结构layer_sizes。
第9~16行重载了模式长度计算函数patternlen。第11行根据模型的结构元组layer_sizes的长度确定层数l。第12~15行的for循环组成计算各层的参数个数:m为前层节点数(第13行),n为后层节点数(第14行),则第15行中(m+1)*n就是本层的参数个数,这是因为后层的每个节点的输入必须添加一个偏移量。第16行将算得的本层参数个数累加到总数p(第10行初始化为0)。
第17~32行重载拟合函数F,参数中w表示模式 w ∈ R p \boldsymbol{w}\in\text{R}^p wRp,x表示自变量 ( x ⊤ , 1 ) (\boldsymbol{x}^\top,1) (x,1)。第18行读取网络层数l。第19~22行计算第1隐藏层的输入:第19行读取第0层节点数m第1隐藏层节点数n。第20行计算第0层参数个数k(也是第1层参数下标起点)。第22行构造第0层的参数矩阵W。第22行计算 φ ( ( x ⊤ , 1 ) w 1 ) \varphi((\boldsymbol{x}^\top,1)\boldsymbol{w}_1) φ((x,1)w1),作为第1隐藏层的输入z。第23~20行的for循环依次逐层构造本层参数矩阵 w i \boldsymbol{w}_i wi(第26行)和输入 ( z i ⊤ , 1 ) (\boldsymbol{z}_i^\top,1) (zi,1)(第27~28行),第30行计算下一层的输入 φ ( ( z i ⊤ , 1 ) w i ) \varphi((\boldsymbol{z}_i^\top,1)\boldsymbol{w}_i) φ((zi,1)wi)为z,第30行更新下一层参数下标起点k。完成循环,所得y因为是矩阵运算的结果,第31层将其扁平化为一维数组。第33~35行重载训练函数fit。与其祖先LogicModel的(也是LineModel)fit函数相比,多了一个表示网络结构的参数hidden_layer_sizes。如前所述,这是一个元组,缺省值为(100,),意味着只有1个隐藏层,隐藏层含100个神经元。函数体内第34行调用自身的construct函数,构造网络结构layer_sizes,供调用拟合函数F时使用。第35行调用祖先LogicModel的fit函数完成训练。
第36~37用Regression类和MLPModel类联合构成用于预测的多层感应模型类MLPRegressor。
理论上,只要给定足够多的隐藏层和层内所含神经元,多层感应模型能拟合任意函数。
例1 用MLPRegressor对象拟合函数 y = x 2 y=x^2 y=x2
:先构造训练数据:

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import uniform
np.random.seed(2023)
x = uniform.rvs(-1, 2, 50)
y = (x**2)
plt.scatter(x, y)
plt.show()

第5行产生50个服从均匀分布 U ( 0 , 1 ) U(0,1) U(0,1)的随机数值,赋予x。第6行计算x的平方赋予y。第7行绘制 ( x , y ) (x,y) (x,y)散点图。
在这里插入图片描述
用仅含一个隐藏层,隐藏层中包含3个神经元的多层感应器拟合 y = x 2 y=x^2 y=x2

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import uniform
.random.seed(2023)
x = uniform.rvs(-1, 2, 50)
y = (x**2)
nnw = MLPRegressor()
nnw.fit(x,y,hidden_layer_sizes = (3,))
yp, acc = nnw.test(x, y)
plt.scatter(x, yp)
plt.show()
print('1隐藏层含3个神经元网络拟合均方根误差%.4f'%acc)

前5行与前同。第6行创建MLPRegressor类对象nnw。第7行用x,y训练nnw为含1个隐藏层,隐藏层含3个神经元的神经网络。第8行调用nnw的test函数,用返回的yp绘制 ( x , y p ) (x,y_p) (x,yp)散点图。
在这里插入图片描述

训练中...,稍候
726次迭代后完成训练。
1隐藏层含3个神经元网络拟合均方根误差0.0238

用含两个隐藏层,分别包含7个、3个神经元的多层感应器拟合 y = x 2 y=x^2 y=x2

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import uniform
.random.seed(2023)
x = uniform.rvs(-1, 2, 50)
y = (x**2)
nnw = MLPRegressor()
nnw.fit(x, y, hidden_layer_sizes = (7, 3))
yp, acc = nnw.test(x,y)
plt.scatter(x, yp)
plt.show()
print('2隐藏层含各7,3个神经元网络拟合方根误差%.4f'%acc)

与上一段代码比较,仅第8行训练nnw的网络换成两个隐藏层,分别包含7个、3个神经元的多层感应器。运行程序,输出
在这里插入图片描述

训练中...,稍候
1967次迭代后完成训练。
2隐藏层含各73个神经元网络拟合方根误差0.0053

比前一个显然拟合得更好,但也付出了计算时间的代价。
Say good bye, 2023.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/588262.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从实际工作情况,介绍嵌入式(MCU)软件开发常用(通用)工具

目录 前言 1、代码阅读及编辑工具&#xff08;VSCode、Understand&#xff09; 2、代码对比工具&#xff08;Beyond Compare&#xff09; 3、代码仓库相关工具&#xff08;Git、SVN、Tortoise&#xff09; 4、文本编辑器&#xff08;Notepad&#xff09; 5、电脑文件搜索工…

【LeetCode:2660. 保龄球游戏的获胜者 | 模拟】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…

PAT 乙级 1046 划拳

划拳是古老中国酒文化的一个有趣的组成部分。酒桌上两人划拳的方法为&#xff1a;每人口中喊出一个数字&#xff0c;同时用手比划出一个数字。如果谁比划出的数字正好等于两人喊出的数字之和&#xff0c;谁就赢了&#xff0c;输家罚一杯酒。两人同赢或两人同输则继续下一轮&…

Python序列之集合

系列文章目录 Python序列之列表Python序列之元组Python序列之字典Python序列之集合&#xff08;本篇文章&#xff09; Python序列之集合 系列文章目录前言一、集合是什么&#xff1f;二、集合的操作1.集合的创建&#xff08;1&#xff09;使用{}创建&#xff08;2&#xff09;…

SpringBoot定时监听RocketMQ的NameServer

问题分析 自己在测试环境部署了RocketMQ&#xff0c;发现namesrv很容易挂掉&#xff0c;于是就想着监控&#xff0c;挂了就发邮件通知。查看了rocketmq-dashboard项目&#xff0c;发现只能监控Broker&#xff0c;遂放弃这一路径。于是就从报错的日志入手&#xff0c;发现最终可…

【MATLAB第87期】#源码分享 | 基于MATLAB的增量神经系统网络SFAM多输入单输出多分类预测模型

【MATLAB第87期】#源码分享 | 基于MATLAB的增量神经系统网络SFAM多输入单输出多分类预测模型 前言 SFAM是一种增量神经网络分类器。它是模糊ARTMAP&#xff08;FAM&#xff09;的一个简单而快速的版本。如果输入相同,FAM和SFAM的产出相同。 参考文献: [1] Kasuba, T. (1993)…

【MMdetection】MMdetection从入门到进阶

基础环境安装 步骤 0. 从官方网站下载并安装 Miniconda。 步骤 1. 创建并激活一个 conda 环境。 conda create --name openmmlab python3.8 -y conda activate openmmlab步骤 2. 基于 PyTorch 官方说明安装 PyTorch。 pip install torch2.0.1 torchvision0.15.2 torchaudio…

【MySQL表的增删查改】

文章目录 前言1 Create1.1 单行数据 全列插入1.2 多行数据 指定列插入1.3 插入否则更新1.4 替换 2 Retrieve2.1 SELECT 列2.1.1 全列查询2.1.2 指定列查询2.1.3 查询字段为表达式2.1.4 为查询结果指定别名2.1.5 结果去重 2.2 WHERE 条件2.2.1 英语不及格的同学及英语成绩 ( &…

C++基础:指针数组和数组指针(大白话讲解)

指针数组&#xff1a;本质上是一个数组&#xff0c;数组中的每一个元素都是一个指针&#xff1b; 数组指针&#xff1a;本质上是一个指针&#xff0c;数组指针是一个指向数组的指针。 为了更直观的分析他们的区别&#xff0c;我举个例子&#xff1a; #include<iostream&g…

操作系统:可变分区管理

有作业序列&#xff1a;作业A要求42K&#xff1b;作业B要求27K&#xff0c;作业C要求22K&#xff0c;作业和空闲内存区如下图所示&#xff0c;请画出最佳适应算法空闲队列图&#xff0c;并分析最佳适应算法是否适合该作业系列。 答&#xff1a;最佳适应算法是按照空闲块由小到大…

【辐射场】3D Gaussian Splatting

三维高斯…喷喷 \, 3D Gaussian Splatting&#xff0c;下文简称3DGS&#xff0c;是好一段时间以来在三维内容创作和三维重建领域比较有热度的一项技术。 它属于基于图像的三维重建方法&#xff0c;意思就是你对现实物体或者场景拍照片&#xff0c;就能给你训练成一个场景模型&a…

C语言之整型提升

文章目录 1 有可能出现的问题2 产生以上问题的原因&#xff08;整型提升&#xff09;3 整型提升的过程4 整型提升示例5 总结 1 有可能出现的问题 代码如下 #include <stdio.h>int main () {int a -1;unsigned int b 1;if (a < b) {printf("a < b");}…

【Spring Security】认证之案例的使用、MD5加密、CSRF防御

目录 一、引言 1、什么是SpringSecurity认证 2、为什么使用SpringSecurity之认证 3、实现步骤 二、快速实现&#xff08;案例&#xff09; 1、添加依赖 2、配置 3、导入数据表及相关代码 4、创建登录页及首页 5、创建配置Controller 6、用户认证 6.1、用户对象User…

WEB 3D技术 three.js通过 GLTFLoader 导入并应用 gltf/glb 3D资源

上文 WEB 3D技术 three.js 雾 基础使用讲解我们讲了雾的基本使用方法 但是 如果我们要做一个树林 一颗一颗树去加 那真的是要累死了 我们一定是在建模软件上 建模好这样的模型 然后将模型导入到场景中 官网中搜索 GLTFLoader 在我们日常WEB开发中 用的最多的3D格式 就是 GLTF…

python练习2【题解///考点列出///错题改正】

一、单选题 【文件】 *1.【单选题】 ——文件&#xff1a;读取方法 下列哪个选项可以从文件中读取任意字节的内容&#xff1f;&#xff08;C &#xff09;A A.read() B.readline() C.readlines() D.以上全部 A\B\C三种方法都是可以读取文件中任意的字节内容的&#xff0…

Lesson 06 vector类(上)

C&#xff1a;渴望力量吗&#xff0c;少年&#xff1f; 文章目录 一、vector是什么&#xff1f;二、vector的使用1. 构造函数2. vector iterator3. vector 空间增长问题4. vector增删查改 三、vector实际使用 一、vector是什么&#xff1f; vector是表示可变大小数组的序列容器…

LVGL 在framebuffer设备上的移植

LVGL 在framebuffer设备上的移植 ItemDescDate2023-12-31Authorhongxi.zhuplatformNXP I.MX6ULLLCDSPI TFTLCD NV3030B 文章目录 LVGL 在framebuffer设备上的移植一、LVGL源码获取二、源码修改适配三、编译&运行补充 一、LVGL源码获取 新建lvgl_imx6ull文件夹&#xff0c…

低代码开发中业务蓝图的重要性:业务需求与系统实现的桥梁

在低代码应用开发领域&#xff0c;业务蓝图是一个至关重要的工具&#xff0c;它提供了组织业务流程需求的详细信息。它类似于一份指导开发人员进行应用开发的路线图&#xff0c;确保与业务的战略目标和需求保持一致。 低代码方法学&#xff0c;顾名思义&#xff0c;即减少了传…

Google机器人团队获ICRA 2023 机器人学习方向最佳论文奖:机器人实体控制的大语言模型程序

这篇论文主要讨论了大型语言模型&#xff08;LLM&#xff09;在机器人控制方面的应用。作者们指出&#xff0c;尽管LLM在理解和生成自然语言方面表现出色&#xff0c;但其在实际应用中&#xff0c;如机器人控制等领域的应用仍然有限。因此&#xff0c;他们提出了一种新的方法&a…

登峰造极,师出造化,Pytorch人工智能AI图像增强框架ControlNet绘画实践,基于Python3.10

人工智能太疯狂&#xff0c;传统劳动力和内容创作平台被AI枪毙&#xff0c;弃尸尘埃。并非空穴来风&#xff0c;也不是危言耸听&#xff0c;人工智能AI图像增强框架ControlNet正在疯狂地改写绘画艺术的发展进程&#xff0c;你问我绘画行业未来的样子&#xff1f;我只好指着Cont…