AES - 在tiny-AES-c基础上封装了2个应用函数(加密/解密)

文章目录

    • AES - 在tiny-AES-c基础上封装了2个应用函数(加密/解密)
    • 概述
    • 增加2个封装函数的AES库
    • aes.h
    • aes.c
    • 在官方测试程序上改的测试程序(用来测试这2个封装函数)
    • END

AES - 在tiny-AES-c基础上封装了2个应用函数(加密/解密)

概述

在github山有个星数很高的AES的C库 tiny-AES-c (https://github.com/kokke/tiny-AES-c.git)
这个库用起来挺好的, 但是需要自己考虑key, iv, data的对齐问题.

我对 AES256 + CBC 封装了2个函数, 调用方只需要给出key, iv, in_data, out_data, 只要有数据就行, 不需要考虑对齐(key, iv, data), 其他调用库之前的预操作, 都在封装函数内做了.

初步测试一下, 好使. 有啥bug能用的时候再改.
封装函数的调用例子

void my_test_encrypt_cbc_ex()
{const char* pKey = "my_key";const char* pIv = "my_iv";const char* pIn = "hello world";uint8_t* pszOut = new uint8_t[strlen(pIn) + 32];size_t len_Out = strlen(pIn) + 32;bool b_rc = false;b_rc = AES256_CBC_encrypt_buffer_ex((uint8_t*)pKey, (int)strlen(pKey), (uint8_t*)pIv, (int)strlen(pIv), (uint8_t*)pIn, (size_t)strlen(pIn), (uint8_t*)pszOut, &len_Out);assert(true == b_rc);showBufHex("out buf", pszOut, len_Out);uint8_t* pszDecrypt = new uint8_t[len_Out];size_t lenDecrypt = len_Out;b_rc = AES256_CBC_decrypt_buffer_ex((uint8_t*)pKey, (int)strlen(pKey), (uint8_t*)pIv, (int)strlen(pIv), (uint8_t*)pszOut, len_Out, (uint8_t*)pszDecrypt, &lenDecrypt);assert(true == b_rc);pszDecrypt[lenDecrypt] = 0x00;printf("descrypt data = [%s]\n", pszDecrypt);if (NULL != pszOut){delete []pszOut;pszOut = NULL;}if (NULL != pszDecrypt){delete[]pszDecrypt;pszDecrypt = NULL;}
}

增加2个封装函数的AES库

aes.h

#ifndef _AES_H_
#define _AES_H_#include <stdint.h>
#include <stddef.h>
#include <stdbool.h> // for bool// Enable ECB, CTR and CBC mode. Note this can be done before including aes.h or at compile-time.
// E.g. with GCC by using the -D flag: gcc -c aes.c -DCBC=0 -DCTR=1 -DECB=1
#define CBC 1 // cbc好一些
#define CTR 1
#define ECB 1// #define the macros below to 1/0 to enable/disable the mode of operation.
//
// CBC enables AES encryption in CBC-mode of operation.
// CTR enables encryption in counter-mode.
// ECB enables the basic ECB 16-byte block algorithm. All can be enabled simultaneously.// The #ifndef-guard allows it to be configured before #include'ing or at compile time.
#ifndef CBC
#define CBC 1
#endif#ifndef ECB
#define ECB 1
#endif#ifndef CTR
#define CTR 1
#endif// #define AES128 1
// #define AES192 1
#define AES256 1#define AES_BLOCKLEN 16 // Block length in bytes - AES is 128b block only#if defined(AES256) && (AES256 == 1)
#define AES_KEYLEN 32
#define AES_keyExpSize 240
#elif defined(AES192) && (AES192 == 1)
#define AES_KEYLEN 24
#define AES_keyExpSize 208
#else
#define AES_KEYLEN 16   // Key length in bytes
#define AES_keyExpSize 176
#endifstruct AES_ctx
{uint8_t RoundKey[AES_keyExpSize];
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))uint8_t Iv[AES_BLOCKLEN];
#endif
};void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key);
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv);
void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv);
#endif#if defined(ECB) && (ECB == 1)
// buffer size is exactly AES_BLOCKLEN bytes; 
// you need only AES_init_ctx as IV is not used in ECB 
// NB: ECB is considered insecure for most uses
void AES_ECB_encrypt(const struct AES_ctx* ctx, uint8_t* buf);
void AES_ECB_decrypt(const struct AES_ctx* ctx, uint8_t* buf);#endif // #if defined(ECB) && (ECB == !)#if defined(CBC) && (CBC == 1)
// buffer size MUST be mutile of AES_BLOCKLEN;
// Suggest https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7 for padding scheme
// NOTES: you need to set IV in ctx via AES_init_ctx_iv() or AES_ctx_set_iv()
//        no IV should ever be reused with the same key 
void AES_CBC_encrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length);
void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length);// 封装的AES_CBC加解密, 只要送入数据(key/iv/bu)和长度(len_key/len_iv/len_buf), 函数里面自己处理(key/iv的对齐(截断或填充)加解密初始化/块尾部填充)
bool AES256_CBC_encrypt_buffer_ex(uint8_t* key, int len_key, uint8_t* iv, int len_iv, uint8_t* buf_in, size_t len_buf_in, uint8_t* buf_out, size_t* len_buf_out);
bool AES256_CBC_decrypt_buffer_ex(uint8_t* key, int len_key, uint8_t* iv, int len_iv, uint8_t* buf_in, size_t len_buf_in, uint8_t* buf_out, size_t* len_buf_out);#endif // #if defined(CBC) && (CBC == 1)#if defined(CTR) && (CTR == 1)// Same function for encrypting as for decrypting. 
// IV is incremented for every block, and used after encryption as XOR-compliment for output
// Suggesting https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7 for padding scheme
// NOTES: you need to set IV in ctx with AES_init_ctx_iv() or AES_ctx_set_iv()
//        no IV should ever be reused with the same key 
void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length);#endif // #if defined(CTR) && (CTR == 1)#endif // _AES_H_

aes.c

/*This is an implementation of the AES algorithm, specifically ECB, CTR and CBC mode.
Block size can be chosen in aes.h - available choices are AES128, AES192, AES256.The implementation is verified against the test vectors in:National Institute of Standards and Technology Special Publication 800-38A 2001 EDECB-AES128
----------plain-text:6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e5130c81c46a35ce411e5fbc1191a0a52eff69f2445df4f9b17ad2b417be66c3710key:2b7e151628aed2a6abf7158809cf4f3cresulting cipher3ad77bb40d7a3660a89ecaf32466ef97f5d3d58503b9699de785895a96fdbaaf43b1cd7f598ece23881b00e3ed0306887b0c785e27e8ad3f8223207104725dd4NOTE:   String length must be evenly divisible by 16byte (str_len % 16 == 0)You should pad the end of the string with zeros if this is not the case.For AES192/256 the key size is proportionally larger.*//*****************************************************************************/
/* Includes:                                                                 */
/*****************************************************************************/
#include <string.h> // CBC mode, for memset
#include "aes.h"/*****************************************************************************/
/* Defines:                                                                  */
/*****************************************************************************/
// The number of columns comprising a state in AES. This is a constant in AES. Value=4
#define Nb 4#if defined(AES256) && (AES256 == 1)
#define Nk 8
#define Nr 14
#elif defined(AES192) && (AES192 == 1)
#define Nk 6
#define Nr 12
#else
#define Nk 4        // The number of 32 bit words in a key.
#define Nr 10       // The number of rounds in AES Cipher.
#endif// jcallan@github points out that declaring Multiply as a function 
// reduces code size considerably with the Keil ARM compiler.
// See this link for more information: https://github.com/kokke/tiny-AES-C/pull/3
#ifndef MULTIPLY_AS_A_FUNCTION
#define MULTIPLY_AS_A_FUNCTION 0
#endif/*****************************************************************************/
/* Private variables:                                                        */
/*****************************************************************************/
// state - array holding the intermediate results during decryption.
typedef uint8_t state_t[4][4];// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
// The numbers below can be computed dynamically trading ROM for RAM - 
// This can be useful in (embedded) bootloader applications, where ROM is often limited.
static const uint8_t sbox[256] = {//0     1    2      3     4    5     6     7      8    9     A      B    C     D     E     F0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
static const uint8_t rsbox[256] = {0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
#endif// The round constant word array, Rcon[i], contains the values given by 
// x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
static const uint8_t Rcon[11] = {0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };/** Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES-C/pull/12),* that you can remove most of the elements in the Rcon array, because they are unused.** From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon** "Only the first some of these constants are actually used – up to rcon[10] for AES-128 (as 11 round keys are needed),*  up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm."*//*****************************************************************************//* Private functions:                                                        *//*****************************************************************************//*static uint8_t getSBoxValue(uint8_t num){return sbox[num];}*/
#define getSBoxValue(num) (sbox[(num)])// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states. 
static void KeyExpansion(uint8_t* RoundKey, const uint8_t* Key)
{unsigned i, j, k;uint8_t tempa[4]; // Used for the column/row operations// The first round key is the key itself.for (i = 0; i < Nk; ++i){RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];}// All other round keys are found from the previous round keys.for (i = Nk; i < Nb * (Nr + 1); ++i){{k = (i - 1) * 4;tempa[0] = RoundKey[k + 0];tempa[1] = RoundKey[k + 1];tempa[2] = RoundKey[k + 2];tempa[3] = RoundKey[k + 3];}if (i % Nk == 0){// This function shifts the 4 bytes in a word to the left once.// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]// Function RotWord(){const uint8_t u8tmp = tempa[0];tempa[0] = tempa[1];tempa[1] = tempa[2];tempa[2] = tempa[3];tempa[3] = u8tmp;}// SubWord() is a function that takes a four-byte input word and // applies the S-box to each of the four bytes to produce an output word.// Function Subword(){tempa[0] = getSBoxValue(tempa[0]);tempa[1] = getSBoxValue(tempa[1]);tempa[2] = getSBoxValue(tempa[2]);tempa[3] = getSBoxValue(tempa[3]);}tempa[0] = tempa[0] ^ Rcon[i / Nk];}
#if defined(AES256) && (AES256 == 1)if (i % Nk == 4){// Function Subword(){tempa[0] = getSBoxValue(tempa[0]);tempa[1] = getSBoxValue(tempa[1]);tempa[2] = getSBoxValue(tempa[2]);tempa[3] = getSBoxValue(tempa[3]);}}
#endifj = i * 4; k = (i - Nk) * 4;RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0];RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1];RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2];RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3];}
}void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key)
{KeyExpansion(ctx->RoundKey, key);
}
#if (defined(CBC) && (CBC == 1)) || (defined(CTR) && (CTR == 1))
void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv)
{KeyExpansion(ctx->RoundKey, key);memcpy(ctx->Iv, iv, AES_BLOCKLEN);
}
void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv)
{memcpy(ctx->Iv, iv, AES_BLOCKLEN);
}
#endif// This function adds the round key to state.
// The round key is added to the state by an XOR function.
static void AddRoundKey(uint8_t round, state_t* state, const uint8_t* RoundKey)
{uint8_t i, j;for (i = 0; i < 4; ++i){for (j = 0; j < 4; ++j){(*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j];}}
}// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void SubBytes(state_t* state)
{uint8_t i, j;for (i = 0; i < 4; ++i){for (j = 0; j < 4; ++j){(*state)[j][i] = getSBoxValue((*state)[j][i]);}}
}// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
static void ShiftRows(state_t* state)
{uint8_t temp;// Rotate first row 1 columns to left  temp = (*state)[0][1];(*state)[0][1] = (*state)[1][1];(*state)[1][1] = (*state)[2][1];(*state)[2][1] = (*state)[3][1];(*state)[3][1] = temp;// Rotate second row 2 columns to left  temp = (*state)[0][2];(*state)[0][2] = (*state)[2][2];(*state)[2][2] = temp;temp = (*state)[1][2];(*state)[1][2] = (*state)[3][2];(*state)[3][2] = temp;// Rotate third row 3 columns to lefttemp = (*state)[0][3];(*state)[0][3] = (*state)[3][3];(*state)[3][3] = (*state)[2][3];(*state)[2][3] = (*state)[1][3];(*state)[1][3] = temp;
}static uint8_t xtime(uint8_t x)
{return ((x << 1) ^ (((x >> 7) & 1) * 0x1b));
}// MixColumns function mixes the columns of the state matrix
static void MixColumns(state_t* state)
{uint8_t i;uint8_t Tmp, Tm, t;for (i = 0; i < 4; ++i){t = (*state)[i][0];Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3];Tm = (*state)[i][0] ^ (*state)[i][1]; Tm = xtime(Tm);  (*state)[i][0] ^= Tm ^ Tmp;Tm = (*state)[i][1] ^ (*state)[i][2]; Tm = xtime(Tm);  (*state)[i][1] ^= Tm ^ Tmp;Tm = (*state)[i][2] ^ (*state)[i][3]; Tm = xtime(Tm);  (*state)[i][2] ^= Tm ^ Tmp;Tm = (*state)[i][3] ^ t;              Tm = xtime(Tm);  (*state)[i][3] ^= Tm ^ Tmp;}
}// Multiply is used to multiply numbers in the field GF(2^8)
// Note: The last call to xtime() is unneeded, but often ends up generating a smaller binary
//       The compiler seems to be able to vectorize the operation better this way.
//       See https://github.com/kokke/tiny-AES-c/pull/34
#if MULTIPLY_AS_A_FUNCTION
static uint8_t Multiply(uint8_t x, uint8_t y)
{return (((y & 1) * x) ^((y >> 1 & 1) * xtime(x)) ^((y >> 2 & 1) * xtime(xtime(x))) ^((y >> 3 & 1) * xtime(xtime(xtime(x)))) ^((y >> 4 & 1) * xtime(xtime(xtime(xtime(x)))))); /* this last call to xtime() can be omitted */
}
#else
#define Multiply(x, y)                                \(  ((y & 1) * x) ^                              \((y>>1 & 1) * xtime(x)) ^                       \((y>>2 & 1) * xtime(xtime(x))) ^                \((y>>3 & 1) * xtime(xtime(xtime(x)))) ^         \((y>>4 & 1) * xtime(xtime(xtime(xtime(x))))))   \

#endif#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
/*
static uint8_t getSBoxInvert(uint8_t num)
{return rsbox[num];
}
*/
#define getSBoxInvert(num) (rsbox[(num)])// MixColumns function mixes the columns of the state matrix.
// The method used to multiply may be difficult to understand for the inexperienced.
// Please use the references to gain more information.
static void InvMixColumns(state_t* state)
{int i;uint8_t a, b, c, d;for (i = 0; i < 4; ++i){a = (*state)[i][0];b = (*state)[i][1];c = (*state)[i][2];d = (*state)[i][3];(*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);(*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);(*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);(*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);}
}// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
static void InvSubBytes(state_t* state)
{uint8_t i, j;for (i = 0; i < 4; ++i){for (j = 0; j < 4; ++j){(*state)[j][i] = getSBoxInvert((*state)[j][i]);}}
}static void InvShiftRows(state_t* state)
{uint8_t temp;// Rotate first row 1 columns to right  temp = (*state)[3][1];(*state)[3][1] = (*state)[2][1];(*state)[2][1] = (*state)[1][1];(*state)[1][1] = (*state)[0][1];(*state)[0][1] = temp;// Rotate second row 2 columns to right temp = (*state)[0][2];(*state)[0][2] = (*state)[2][2];(*state)[2][2] = temp;temp = (*state)[1][2];(*state)[1][2] = (*state)[3][2];(*state)[3][2] = temp;// Rotate third row 3 columns to righttemp = (*state)[0][3];(*state)[0][3] = (*state)[1][3];(*state)[1][3] = (*state)[2][3];(*state)[2][3] = (*state)[3][3];(*state)[3][3] = temp;
}
#endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)// Cipher is the main function that encrypts the PlainText.
static void Cipher(state_t* state, const uint8_t* RoundKey)
{uint8_t round = 0;// Add the First round key to the state before starting the rounds.AddRoundKey(0, state, RoundKey);// There will be Nr rounds.// The first Nr-1 rounds are identical.// These Nr rounds are executed in the loop below.// Last one without MixColumns()for (round = 1; ; ++round){SubBytes(state);ShiftRows(state);if (round == Nr) {break;}MixColumns(state);AddRoundKey(round, state, RoundKey);}// Add round key to last roundAddRoundKey(Nr, state, RoundKey);
}#if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)
static void InvCipher(state_t* state, const uint8_t* RoundKey)
{uint8_t round = 0;// Add the First round key to the state before starting the rounds.AddRoundKey(Nr, state, RoundKey);// There will be Nr rounds.// The first Nr-1 rounds are identical.// These Nr rounds are executed in the loop below.// Last one without InvMixColumn()for (round = (Nr - 1); ; --round){InvShiftRows(state);InvSubBytes(state);AddRoundKey(round, state, RoundKey);if (round == 0) {break;}InvMixColumns(state);}}
#endif // #if (defined(CBC) && CBC == 1) || (defined(ECB) && ECB == 1)/*****************************************************************************/
/* Public functions:                                                         */
/*****************************************************************************/
#if defined(ECB) && (ECB == 1)void AES_ECB_encrypt(const struct AES_ctx* ctx, uint8_t* buf)
{// The next function call encrypts the PlainText with the Key using AES algorithm.Cipher((state_t*)buf, ctx->RoundKey);
}void AES_ECB_decrypt(const struct AES_ctx* ctx, uint8_t* buf)
{// The next function call decrypts the PlainText with the Key using AES algorithm.InvCipher((state_t*)buf, ctx->RoundKey);
}#endif // #if defined(ECB) && (ECB == 1)#if defined(CBC) && (CBC == 1)static void XorWithIv(uint8_t* buf, const uint8_t* Iv)
{uint8_t i;for (i = 0; i < AES_BLOCKLEN; ++i) // The block in AES is always 128bit no matter the key size{buf[i] ^= Iv[i];}
}void AES_CBC_encrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length)
{size_t i;uint8_t* Iv = ctx->Iv;for (i = 0; i < length; i += AES_BLOCKLEN){XorWithIv(buf, Iv);Cipher((state_t*)buf, ctx->RoundKey);Iv = buf;buf += AES_BLOCKLEN;}/* store Iv in ctx for next call */memcpy(ctx->Iv, Iv, AES_BLOCKLEN);
}void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length)
{size_t i;uint8_t storeNextIv[AES_BLOCKLEN];for (i = 0; i < length; i += AES_BLOCKLEN){memcpy(storeNextIv, buf, AES_BLOCKLEN);InvCipher((state_t*)buf, ctx->RoundKey);XorWithIv(buf, ctx->Iv);memcpy(ctx->Iv, storeNextIv, AES_BLOCKLEN);buf += AES_BLOCKLEN;}}static bool safe_fill_buf(uint8_t* pBufDst, size_t len_bufDst, uint8_t* pBufSrc, size_t len_bufSrc)
{bool b_rc = false;uint8_t* pBufDstCur = NULL;size_t len_bufDstCur = 0;size_t len_to_copy = 0;do {if ((NULL == pBufDst) || (len_bufDst <= 0)){break;}if ((NULL == pBufSrc) || (len_bufSrc <= 0)){break;}if (len_bufDst <= len_bufSrc){memcpy(pBufDst, pBufSrc, len_bufDst);}else {// 将pBufSrc依次附加到pBufDst, 直到将pBufDst填满pBufDstCur = pBufDst;len_bufDstCur = len_bufDst;len_to_copy = len_bufSrc;do {if (len_bufDstCur <= len_to_copy){len_to_copy = len_bufDstCur;}memcpy(pBufDstCur, pBufSrc, len_to_copy);len_bufDstCur -= len_to_copy;pBufDstCur += len_to_copy;} while (len_bufDstCur > 0);}b_rc = true;} while (false);return b_rc;
}static bool buf_add_padding(uint8_t* buf, size_t len_buf, size_t len_data, size_t* len_out_with_padding)
{bool b_rc = false;int iMod16 = 0;int iPaddingLen = 0;int i = 0;uint8_t* pBufCur = NULL;do {// 只有 (len_data > 0) 满足时, 才能加paddingif ((NULL == buf) || (len_data <= 0) || ((len_buf - len_data) < 32) || (NULL == len_out_with_padding)){break;}iPaddingLen = 0x10; // 即使原始数据长度是0x10的倍数, 也需要加0x10个padding, 这样才能区分出原始数据iMod16 = len_data % 0x10;if (iMod16 > 0){iPaddingLen += (0x10 - iMod16); // 最多加31个padding}*len_out_with_padding = (len_data + iPaddingLen);pBufCur = buf;for (i = 0; i < iPaddingLen; i++){*(pBufCur + len_data + i) = (uint8_t)iPaddingLen;}b_rc = true;} while (false);return b_rc;
}bool AES256_CBC_encrypt_buffer_ex(uint8_t* key, int len_key, uint8_t* iv, int len_iv, uint8_t* buf_in, size_t len_buf_in, uint8_t* buf_out, size_t* len_buf_out)
{bool b_rc = false;struct AES_ctx ctx;// key = 32bytesuint8_t key_new[32];// iv = 16 bytesuint8_t iv_new[16];// 要求给出的输出buf长度 = (buf_in_len + 32)// in = 16的倍数, 如果原始输入不够16倍数, 填充(16 + N%16)个字节, 填充的字节为0x10 ~ (0x10 + N%16)// 如果输入数据len = 16 x N + 0, 那么填充0x10个0x10// 如果输入数据len = 16 x N + 1, 那么填充0x11个0x11// 解密数据后, 用返回的buf_out内容和len_buf_out长度, 函数内会处理好// 原始数据长度 >0就行, 会处理成加密输入数据// 输入数据的长度必须 >= 32(包括填充的16 + N%16 个字节)do {// 处理key的对齐if ((NULL == key) || (len_key <= 0)){break;}if (!safe_fill_buf(key_new, sizeof(key_new), key, len_key)){break;}// 处理iv的对齐if ((NULL == iv) || (len_iv <= 0)){break;}if (!safe_fill_buf(iv_new, sizeof(iv_new), iv, len_iv)){break;}// 处理buf的对齐if ((NULL == buf_in) || (len_buf_in <= 0)){break;}if ((NULL == buf_out) || (NULL == len_buf_out) || (*len_buf_out <= 0)){break;}if ((*len_buf_out - len_buf_in) < 32){// 为了在buf_out末尾填充buf, 要有16~31个字节空间break;}// 将输入数据拷贝到输出数据memcpy(buf_out, buf_in, len_buf_in);// 填充(add padding)输出数据if (!buf_add_padding(buf_out, *len_buf_out, len_buf_in, len_buf_out)){break;}// 将准备好的输出数据送AES加密AES_init_ctx_iv(&ctx, key_new, iv_new);AES_CBC_encrypt_buffer(&ctx, buf_out, *len_buf_out);b_rc = true;} while (false);return b_rc;
}bool AES256_CBC_decrypt_buffer_ex(uint8_t* key, int len_key, uint8_t* iv, int len_iv, uint8_t* buf_in, size_t len_buf_in, uint8_t* buf_out, size_t* len_buf_out)
{bool b_rc = false;struct AES_ctx ctx;// key = 32bytesuint8_t key_new[32];// iv = 16 bytesuint8_t iv_new[16];// 要求给出的输出buf长度 = (buf_in_len + 32)// in = 16的倍数, 如果原始输入不够16倍数, 填充(16 + N%16)个字节, 填充的字节为0x10 ~ (0x10 + N%16)// 如果输入数据len = 16 x N + 0, 那么填充0x10个0x10// 如果输入数据len = 16 x N + 1, 那么填充0x11个0x11// 解密数据后, 用返回的buf_out内容和len_buf_out长度, 函数内会处理好// 原始数据长度 >0就行, 会处理成加密输入数据// 输入数据的长度必须 >= 32(包括填充的16 + N%16 个字节)do {// 处理key的对齐if ((NULL == key) || (len_key <= 0)){break;}if (!safe_fill_buf(key_new, sizeof(key_new), key, len_key)){break;}// 处理iv的对齐if ((NULL == iv) || (len_iv <= 0)){break;}if (!safe_fill_buf(iv_new, sizeof(iv_new), iv, len_iv)){break;}// 处理buf的对齐if ((NULL == buf_in) || (len_buf_in <= 0)){break;}if ((NULL == buf_out) || (NULL == len_buf_out) || (*len_buf_out <= 0)){break;}// 解密的buf长度至少要不比加密的buf长度小if ((*len_buf_out - len_buf_in) < 0){break;}// 将输入数据拷贝到输出数据memcpy(buf_out, buf_in, len_buf_in);// 解密时, 不需要考虑padding填充// 将准备好的输出数据送AES解密AES_init_ctx_iv(&ctx, key_new, iv_new);AES_CBC_decrypt_buffer(&ctx, buf_out, len_buf_in);// 将去掉padding的解密数据长度更新到 *len_buf_out*len_buf_out = len_buf_in;*len_buf_out -= buf_out[len_buf_in - 1];b_rc = true;} while (false);return b_rc;
}#endif // #if defined(CBC) && (CBC == 1)#if defined(CTR) && (CTR == 1)/* Symmetrical operation: same function for encrypting as for decrypting. Note any IV/nonce should never be reused with the same key */
void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length)
{uint8_t buffer[AES_BLOCKLEN];size_t i;int bi;for (i = 0, bi = AES_BLOCKLEN; i < length; ++i, ++bi){if (bi == AES_BLOCKLEN) /* we need to regen xor compliment in buffer */{memcpy(buffer, ctx->Iv, AES_BLOCKLEN);Cipher((state_t*)buffer, ctx->RoundKey);/* Increment Iv and handle overflow */for (bi = (AES_BLOCKLEN - 1); bi >= 0; --bi){/* inc will overflow */if (ctx->Iv[bi] == 255){ctx->Iv[bi] = 0;continue;}ctx->Iv[bi] += 1;break;}bi = 0;}buf[i] = (buf[i] ^ buffer[bi]);}
}#endif // #if defined(CTR) && (CTR == 1)

在官方测试程序上改的测试程序(用来测试这2个封装函数)


// @file test.cpp
// env = vs2019 vc++ console#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <assert.h> // for assert() #ifdef __cplusplus
#define INCLUDE_C_HEADER_BEGIN extern "C" {
#define INCLUDE_C_HEADER_END }
#else
#define INCLUDE_C_HEADER_BEGIN
#define INCLUDE_C_HEADER_END
#endif Enable ECB, CTR and CBC mode. Note this can be done before including aes.h or at compile-time.
 E.g. with GCC by using the -D flag: gcc -c aes.c -DCBC=0 -DCTR=1 -DECB=1
//#define CBC 1
//#define CTR 1
//#define ECB 1INCLUDE_C_HEADER_BEGIN
#include "aes.h"
INCLUDE_C_HEADER_ENDstatic void phex(uint8_t* str);
static int test_encrypt_cbc(void);
static int test_decrypt_cbc(void);
static int test_encrypt_ctr(void);
static int test_decrypt_ctr(void);
static int test_encrypt_ecb(void);
static int test_decrypt_ecb(void);
static void test_encrypt_ecb_verbose(void);void my_test_encrypt_cbc_ex();int main(void)
{int exit = 0;#if defined(AES256)printf("\nTesting AES256\n\n");
#elif defined(AES192)printf("\nTesting AES192\n\n");
#elif defined(AES128)printf("\nTesting AES128\n\n");
#elseprintf("You need to specify a symbol between AES128, AES192 or AES256. Exiting");return 0;
#endifmy_test_encrypt_cbc_ex();//   // cbc好一些//   test_encrypt_cbc();//   test_decrypt_cbc();//   exit = test_encrypt_cbc() + test_decrypt_cbc() +//test_encrypt_ctr() + test_decrypt_ctr() +//test_decrypt_ecb() + test_encrypt_ecb();//   test_encrypt_ecb_verbose();return exit;
}void showBufHex(const char* pszTip, uint8_t* pBuf, size_t len_Buf)
{size_t i = 0;int i_line_char_cnt = 0;do {if (NULL != pszTip){printf("%s\n", pszTip);}for (i = 0; i < len_Buf; i++){printf("%2.2X ", pBuf[i]);if (16 == ++i_line_char_cnt){i_line_char_cnt = 0;printf("\n");}}} while (false);
}void my_test_encrypt_cbc_ex()
{const char* pKey = "my_key";const char* pIv = "my_iv";const char* pIn = "hello world";uint8_t* pszOut = new uint8_t[strlen(pIn) + 32];size_t len_Out = strlen(pIn) + 32;bool b_rc = false;b_rc = AES256_CBC_encrypt_buffer_ex((uint8_t*)pKey, (int)strlen(pKey), (uint8_t*)pIv, (int)strlen(pIv), (uint8_t*)pIn, (size_t)strlen(pIn), (uint8_t*)pszOut, &len_Out);assert(true == b_rc);showBufHex("out buf", pszOut, len_Out);uint8_t* pszDecrypt = new uint8_t[len_Out];size_t lenDecrypt = len_Out;b_rc = AES256_CBC_decrypt_buffer_ex((uint8_t*)pKey, (int)strlen(pKey), (uint8_t*)pIv, (int)strlen(pIv), (uint8_t*)pszOut, len_Out, (uint8_t*)pszDecrypt, &lenDecrypt);assert(true == b_rc);pszDecrypt[lenDecrypt] = 0x00;printf("descrypt data = [%s]\n", pszDecrypt);if (NULL != pszOut){delete []pszOut;pszOut = NULL;}if (NULL != pszDecrypt){delete[]pszDecrypt;pszDecrypt = NULL;}
}// prints string as hex
static void phex(uint8_t* str)
{#if defined(AES256)uint8_t len = 32;
#elif defined(AES192)uint8_t len = 24;
#elif defined(AES128)uint8_t len = 16;
#endifunsigned char i;for (i = 0; i < len; ++i)printf("%.2x", str[i]);printf("\n");
}static void test_encrypt_ecb_verbose(void)
{// Example of more verbose verificationuint8_t i;// 128bit keyuint8_t key[16] = { (uint8_t)0x2b, (uint8_t)0x7e, (uint8_t)0x15, (uint8_t)0x16, (uint8_t)0x28, (uint8_t)0xae, (uint8_t)0xd2, (uint8_t)0xa6, (uint8_t)0xab, (uint8_t)0xf7, (uint8_t)0x15, (uint8_t)0x88, (uint8_t)0x09, (uint8_t)0xcf, (uint8_t)0x4f, (uint8_t)0x3c };// 512bit textuint8_t plain_text[64] = { (uint8_t)0x6b, (uint8_t)0xc1, (uint8_t)0xbe, (uint8_t)0xe2, (uint8_t)0x2e, (uint8_t)0x40, (uint8_t)0x9f, (uint8_t)0x96, (uint8_t)0xe9, (uint8_t)0x3d, (uint8_t)0x7e, (uint8_t)0x11, (uint8_t)0x73, (uint8_t)0x93, (uint8_t)0x17, (uint8_t)0x2a,(uint8_t)0xae, (uint8_t)0x2d, (uint8_t)0x8a, (uint8_t)0x57, (uint8_t)0x1e, (uint8_t)0x03, (uint8_t)0xac, (uint8_t)0x9c, (uint8_t)0x9e, (uint8_t)0xb7, (uint8_t)0x6f, (uint8_t)0xac, (uint8_t)0x45, (uint8_t)0xaf, (uint8_t)0x8e, (uint8_t)0x51,(uint8_t)0x30, (uint8_t)0xc8, (uint8_t)0x1c, (uint8_t)0x46, (uint8_t)0xa3, (uint8_t)0x5c, (uint8_t)0xe4, (uint8_t)0x11, (uint8_t)0xe5, (uint8_t)0xfb, (uint8_t)0xc1, (uint8_t)0x19, (uint8_t)0x1a, (uint8_t)0x0a, (uint8_t)0x52, (uint8_t)0xef,(uint8_t)0xf6, (uint8_t)0x9f, (uint8_t)0x24, (uint8_t)0x45, (uint8_t)0xdf, (uint8_t)0x4f, (uint8_t)0x9b, (uint8_t)0x17, (uint8_t)0xad, (uint8_t)0x2b, (uint8_t)0x41, (uint8_t)0x7b, (uint8_t)0xe6, (uint8_t)0x6c, (uint8_t)0x37, (uint8_t)0x10 };// print text to encrypt, key and IVprintf("ECB encrypt verbose:\n\n");printf("plain text:\n");for (i = (uint8_t)0; i < (uint8_t)4; ++i){phex(plain_text + i * (uint8_t)16);}printf("\n");printf("key:\n");phex(key);printf("\n");// print the resulting cipher as 4 x 16 byte stringsprintf("ciphertext:\n");struct AES_ctx ctx;AES_init_ctx(&ctx, key);for (i = 0; i < 4; ++i){AES_ECB_encrypt(&ctx, plain_text + (i * 16));phex(plain_text + (i * 16));}printf("\n");
}static int test_encrypt_ecb(void)
{
#if defined(AES256)uint8_t key[] = { 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4 };uint8_t out[] = { 0xf3, 0xee, 0xd1, 0xbd, 0xb5, 0xd2, 0xa0, 0x3c, 0x06, 0x4b, 0x5a, 0x7e, 0x3d, 0xb1, 0x81, 0xf8 };
#elif defined(AES192)uint8_t key[] = { 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b };uint8_t out[] = { 0xbd, 0x33, 0x4f, 0x1d, 0x6e, 0x45, 0xf2, 0x5f, 0xf7, 0x12, 0xa2, 0x14, 0x57, 0x1f, 0xa5, 0xcc };
#elif defined(AES128)uint8_t key[] = { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c };uint8_t out[] = { 0x3a, 0xd7, 0x7b, 0xb4, 0x0d, 0x7a, 0x36, 0x60, 0xa8, 0x9e, 0xca, 0xf3, 0x24, 0x66, 0xef, 0x97 };
#endifuint8_t in[] = { 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a };struct AES_ctx ctx;AES_init_ctx(&ctx, key);AES_ECB_encrypt(&ctx, in);printf("ECB encrypt: ");if (0 == memcmp((char*)out, (char*)in, 16)) {printf("SUCCESS!\n");return(0);}else {printf("FAILURE!\n");return(1);}
}static int test_decrypt_cbc(void)
{#if defined(AES256)uint8_t key[] = { 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4 };uint8_t in[] = { 0xf5, 0x8c, 0x4c, 0x04, 0xd6, 0xe5, 0xf1, 0xba, 0x77, 0x9e, 0xab, 0xfb, 0x5f, 0x7b, 0xfb, 0xd6,0x9c, 0xfc, 0x4e, 0x96, 0x7e, 0xdb, 0x80, 0x8d, 0x67, 0x9f, 0x77, 0x7b, 0xc6, 0x70, 0x2c, 0x7d,0x39, 0xf2, 0x33, 0x69, 0xa9, 0xd9, 0xba, 0xcf, 0xa5, 0x30, 0xe2, 0x63, 0x04, 0x23, 0x14, 0x61,0xb2, 0xeb, 0x05, 0xe2, 0xc3, 0x9b, 0xe9, 0xfc, 0xda, 0x6c, 0x19, 0x07, 0x8c, 0x6a, 0x9d, 0x1b };
#elif defined(AES192)uint8_t key[] = { 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5, 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b };uint8_t in[] = { 0x4f, 0x02, 0x1d, 0xb2, 0x43, 0xbc, 0x63, 0x3d, 0x71, 0x78, 0x18, 0x3a, 0x9f, 0xa0, 0x71, 0xe8,0xb4, 0xd9, 0xad, 0xa9, 0xad, 0x7d, 0xed, 0xf4, 0xe5, 0xe7, 0x38, 0x76, 0x3f, 0x69, 0x14, 0x5a,0x57, 0x1b, 0x24, 0x20, 0x12, 0xfb, 0x7a, 0xe0, 0x7f, 0xa9, 0xba, 0xac, 0x3d, 0xf1, 0x02, 0xe0,0x08, 0xb0, 0xe2, 0x79, 0x88, 0x59, 0x88, 0x81, 0xd9, 0x20, 0xa9, 0xe6, 0x4f, 0x56, 0x15, 0xcd };
#elif defined(AES128)uint8_t key[] = { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c };uint8_t in[] = { 0x76, 0x49, 0xab, 0xac, 0x81, 0x19, 0xb2, 0x46, 0xce, 0xe9, 0x8e, 0x9b, 0x12, 0xe9, 0x19, 0x7d,0x50, 0x86, 0xcb, 0x9b, 0x50, 0x72, 0x19, 0xee, 0x95, 0xdb, 0x11, 0x3a, 0x91, 0x76, 0x78, 0xb2,0x73, 0xbe, 0xd6, 0xb8, 0xe3, 0xc1, 0x74, 0x3b, 0x71, 0x16, 0xe6, 0x9e, 0x22, 0x22, 0x95, 0x16,0x3f, 0xf1, 0xca, 0xa1, 0x68, 0x1f, 0xac, 0x09, 0x12, 0x0e, 0xca, 0x30, 0x75, 0x86, 0xe1, 0xa7 };
#endifuint8_t iv[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f };uint8_t out[] = { 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10 };//  uint8_t buffer[64];struct AES_ctx ctx;AES_init_ctx_iv(&ctx, key, iv);AES_CBC_decrypt_buffer(&ctx, in, 64);printf("CBC decrypt: ");if (0 == memcmp((char*)out, (char*)in, 64)) {printf("SUCCESS!\n");return(0);}else {printf("FAILURE!\n");return(1);}
}static int test_encrypt_cbc(void)
{
#if defined(AES256)uint8_t key[] = { 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4 };uint8_t out[] = { 0xf5, 0x8c, 0x4c, 0x04, 0xd6, 0xe5, 0xf1, 0xba, 0x77, 0x9e, 0xab, 0xfb, 0x5f, 0x7b, 0xfb, 0xd6,0x9c, 0xfc, 0x4e, 0x96, 0x7e, 0xdb, 0x80, 0x8d, 0x67, 0x9f, 0x77, 0x7b, 0xc6, 0x70, 0x2c, 0x7d,0x39, 0xf2, 0x33, 0x69, 0xa9, 0xd9, 0xba, 0xcf, 0xa5, 0x30, 0xe2, 0x63, 0x04, 0x23, 0x14, 0x61,0xb2, 0xeb, 0x05, 0xe2, 0xc3, 0x9b, 0xe9, 0xfc, 0xda, 0x6c, 0x19, 0x07, 0x8c, 0x6a, 0x9d, 0x1b };
#elif defined(AES192)uint8_t key[] = { 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5, 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b };uint8_t out[] = { 0x4f, 0x02, 0x1d, 0xb2, 0x43, 0xbc, 0x63, 0x3d, 0x71, 0x78, 0x18, 0x3a, 0x9f, 0xa0, 0x71, 0xe8,0xb4, 0xd9, 0xad, 0xa9, 0xad, 0x7d, 0xed, 0xf4, 0xe5, 0xe7, 0x38, 0x76, 0x3f, 0x69, 0x14, 0x5a,0x57, 0x1b, 0x24, 0x20, 0x12, 0xfb, 0x7a, 0xe0, 0x7f, 0xa9, 0xba, 0xac, 0x3d, 0xf1, 0x02, 0xe0,0x08, 0xb0, 0xe2, 0x79, 0x88, 0x59, 0x88, 0x81, 0xd9, 0x20, 0xa9, 0xe6, 0x4f, 0x56, 0x15, 0xcd };
#elif defined(AES128)uint8_t key[] = { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c };uint8_t out[] = { 0x76, 0x49, 0xab, 0xac, 0x81, 0x19, 0xb2, 0x46, 0xce, 0xe9, 0x8e, 0x9b, 0x12, 0xe9, 0x19, 0x7d,0x50, 0x86, 0xcb, 0x9b, 0x50, 0x72, 0x19, 0xee, 0x95, 0xdb, 0x11, 0x3a, 0x91, 0x76, 0x78, 0xb2,0x73, 0xbe, 0xd6, 0xb8, 0xe3, 0xc1, 0x74, 0x3b, 0x71, 0x16, 0xe6, 0x9e, 0x22, 0x22, 0x95, 0x16,0x3f, 0xf1, 0xca, 0xa1, 0x68, 0x1f, 0xac, 0x09, 0x12, 0x0e, 0xca, 0x30, 0x75, 0x86, 0xe1, 0xa7 };
#endifuint8_t iv[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f };uint8_t in[] = { 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10 };struct AES_ctx ctx;AES_init_ctx_iv(&ctx, key, iv);AES_CBC_encrypt_buffer(&ctx, in, 64);printf("CBC encrypt: ");if (0 == memcmp((char*)out, (char*)in, 64)) {printf("SUCCESS!\n");return(0);}else {printf("FAILURE!\n");return(1);}
}static int test_xcrypt_ctr(const char* xcrypt);
static int test_encrypt_ctr(void)
{return test_xcrypt_ctr("encrypt");
}static int test_decrypt_ctr(void)
{return test_xcrypt_ctr("decrypt");
}static int test_xcrypt_ctr(const char* xcrypt)
{
#if defined(AES256)uint8_t key[32] = { 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4 };uint8_t in[64] = { 0x60, 0x1e, 0xc3, 0x13, 0x77, 0x57, 0x89, 0xa5, 0xb7, 0xa7, 0xf5, 0x04, 0xbb, 0xf3, 0xd2, 0x28,0xf4, 0x43, 0xe3, 0xca, 0x4d, 0x62, 0xb5, 0x9a, 0xca, 0x84, 0xe9, 0x90, 0xca, 0xca, 0xf5, 0xc5,0x2b, 0x09, 0x30, 0xda, 0xa2, 0x3d, 0xe9, 0x4c, 0xe8, 0x70, 0x17, 0xba, 0x2d, 0x84, 0x98, 0x8d,0xdf, 0xc9, 0xc5, 0x8d, 0xb6, 0x7a, 0xad, 0xa6, 0x13, 0xc2, 0xdd, 0x08, 0x45, 0x79, 0x41, 0xa6 };
#elif defined(AES192)uint8_t key[24] = { 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b };uint8_t in[64] = { 0x1a, 0xbc, 0x93, 0x24, 0x17, 0x52, 0x1c, 0xa2, 0x4f, 0x2b, 0x04, 0x59, 0xfe, 0x7e, 0x6e, 0x0b,0x09, 0x03, 0x39, 0xec, 0x0a, 0xa6, 0xfa, 0xef, 0xd5, 0xcc, 0xc2, 0xc6, 0xf4, 0xce, 0x8e, 0x94,0x1e, 0x36, 0xb2, 0x6b, 0xd1, 0xeb, 0xc6, 0x70, 0xd1, 0xbd, 0x1d, 0x66, 0x56, 0x20, 0xab, 0xf7,0x4f, 0x78, 0xa7, 0xf6, 0xd2, 0x98, 0x09, 0x58, 0x5a, 0x97, 0xda, 0xec, 0x58, 0xc6, 0xb0, 0x50 };
#elif defined(AES128)uint8_t key[16] = { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c };uint8_t in[64] = { 0x87, 0x4d, 0x61, 0x91, 0xb6, 0x20, 0xe3, 0x26, 0x1b, 0xef, 0x68, 0x64, 0x99, 0x0d, 0xb6, 0xce,0x98, 0x06, 0xf6, 0x6b, 0x79, 0x70, 0xfd, 0xff, 0x86, 0x17, 0x18, 0x7b, 0xb9, 0xff, 0xfd, 0xff,0x5a, 0xe4, 0xdf, 0x3e, 0xdb, 0xd5, 0xd3, 0x5e, 0x5b, 0x4f, 0x09, 0x02, 0x0d, 0xb0, 0x3e, 0xab,0x1e, 0x03, 0x1d, 0xda, 0x2f, 0xbe, 0x03, 0xd1, 0x79, 0x21, 0x70, 0xa0, 0xf3, 0x00, 0x9c, 0xee };
#endifuint8_t iv[16] = { 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff };uint8_t out[64] = { 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c, 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11, 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17, 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10 };struct AES_ctx ctx;AES_init_ctx_iv(&ctx, key, iv);AES_CTR_xcrypt_buffer(&ctx, in, 64);printf("CTR %s: ", xcrypt);if (0 == memcmp((char*)out, (char*)in, 64)) {printf("SUCCESS!\n");return(0);}else {printf("FAILURE!\n");return(1);}
}static int test_decrypt_ecb(void)
{
#if defined(AES256)uint8_t key[] = { 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe, 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7, 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4 };uint8_t in[] = { 0xf3, 0xee, 0xd1, 0xbd, 0xb5, 0xd2, 0xa0, 0x3c, 0x06, 0x4b, 0x5a, 0x7e, 0x3d, 0xb1, 0x81, 0xf8 };
#elif defined(AES192)uint8_t key[] = { 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52, 0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b };uint8_t in[] = { 0xbd, 0x33, 0x4f, 0x1d, 0x6e, 0x45, 0xf2, 0x5f, 0xf7, 0x12, 0xa2, 0x14, 0x57, 0x1f, 0xa5, 0xcc };
#elif defined(AES128)uint8_t key[] = { 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c };uint8_t in[] = { 0x3a, 0xd7, 0x7b, 0xb4, 0x0d, 0x7a, 0x36, 0x60, 0xa8, 0x9e, 0xca, 0xf3, 0x24, 0x66, 0xef, 0x97 };
#endifuint8_t out[] = { 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96, 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a };struct AES_ctx ctx;AES_init_ctx(&ctx, key);AES_ECB_decrypt(&ctx, in);printf("ECB decrypt: ");if (0 == memcmp((char*)out, (char*)in, 16)) {printf("SUCCESS!\n");return(0);}else {printf("FAILURE!\n");return(1);}
}

END

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/588063.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LOJ #6277 数列分块1题解 2023年最后一篇题解

Part #0 . 前言 \text{Part \#0 . 前言} Part #0 . 前言 分块是一种优雅的暴力。 Part #1 . 数列分块入门1 \text{Part \#1 . 数列分块入门1} Part #1 . 数列分块入门1 传送门 这题是一个基础的分块&#xff0c;块外的暴力&#xff0c;块内做标记&#xff0c;块长 n \sqrt{…

2023-12-21 LeetCode每日一题(美丽塔 II)

2023-12-21每日一题 一、题目编号 2866. 美丽塔 II二、题目链接 点击跳转到题目位置 三、题目描述 给你一个长度为 n 下标从 0 开始的整数数组 maxHeights 。 你的任务是在坐标轴上建 n 座塔。第 i 座塔的下标为 i &#xff0c;高度为 heights[i] 。 如果以下条件满足&a…

linux驱动(一):led

本文主要探讨210的led驱动相关知识。 驱动 操作系统驱动硬件的代码,驱动上层是系统调用API,下层是硬件 宏内核&#xff1a;内核整体上为一个过程实现,运行在同一地址空间,相互调用简单高效 微内核&#xff1a;功能为独立过程,过程间通过IPC通信 …

致最后【个人】

致最后【个人】 前言版权推荐我的大学课程学习致最后感谢鼓励后期规划日星月云留下你想说的话吧最后 前言 现在时间是2023-12-31 12:30:35 我放假回到家的第二天 也是公历2023年的最后一天 写这篇文章&#xff0c;恰好是佳作天成。 以下内容源自《【计算机图像处理】》 仅…

【华为OD机试真题2023CD卷 JAVAJS】测试用例执行计划

华为OD2023(C&D卷)机试题库全覆盖,刷题指南点这里 测试用例执行计划 时间限制:1s 空间限制:256MB 限定语言:不限 题目描述: 某个产品当前迭代周期内有N个特性()需要进行覆盖测试,每个特性都被评估了对应的优先级,特性使用其ID作为下标进行标识。 设计了M个测试用…

在Linux运行LaTeX

共有三个步骤1. 装LaTexTeX Live - TeX Users Group 下载对应版本安装包安装 文件比较大&#xff0c;这步花的时间多一点&#xff0c;不过也不会太多&#xff0c;感觉5分钟十分钟的样子吧 2. 装TexStidio 这一步是安装一个类似在windows系统下的TaTeX GUI软件 图标是这样3. 配置…

Tensorflow2.X的GPU版框架最快最稳搭建方法

一、环境基础 Windows10以上 已装Anaconda 支持GPU 二、搭建步骤 1. 在Anaconda中创建并进入虚拟环境 conda create -n envname python3.8 conda activate envname 注意&#xff1a;envname 替换为你自己想命名的&#xff0c;下文将以“Ljdenv”出现 2.安…

配置打开QT designer

要在PyCharm中配置打开Qt Designer的外部工具&#xff0c;可以遵循以下步骤。这个配置将允许你直接从PyCharm打开Qt Designer&#xff0c;编辑.ui文件。 打开PyCharm的设置: 选择File > Settings&#xff08;在macOS上是PyCharm > Preferences&#xff09;。 导航到外部…

MongoDB聚合管道:$match

$match是聚合管道中最常用的阶段之一&#xff0c;用于过滤管道中的文档&#xff0c;只允许符合条件的文档进入到管道的下一阶段。 语法 {$match:{<query>}}使用举例 创建articles文档&#xff0c;并加入下面的数据 { "_id" : ObjectId("512bc95fe835e…

k近邻算法原理

k近邻算法主要思想 k近邻算法是一种基本的分类与回归方法&#xff0c;其主要思想是基于样本之间的距离进行分类或回归预测。即对未标记样本的类别&#xff0c;由距离其最近的k个邻居投票来决定属于哪个类别。具体而言&#xff0c;k近邻算法将新的样本点与训练数据集中的样本进…

【实用工具】Tmux使用指南

Tmux 三个重要概念 session&#xff08;会话&#xff09;、window&#xff08;窗口&#xff09;、pane&#xff08;面板&#xff09; 一个会话可以有多个窗口&#xff0c;一个窗口可以划分为多个面板 注意在tmux中使用快捷命令的话&#xff0c;需要加上前缀ctrlb 关于session的…

2024 GMF|The Sandbox 为创作者赋能的新时代

以新的 GMF 模型和专门的参与池奖励来开启 2024 年吧。 11 月 3 日&#xff0c;我们在香港全球创作者日上宣布&#xff0c;The Sandbox 已为所有创作者分配了100,000,000 SAND&#xff0c;将通过 GMF 进行分发。作为首次启动的建设者挑战&#xff0c;我们准备了专门的 SAND 参与…

linux 防火墙查看放行端口,追加放行端口命令

linux 查看防火墙已经放行端口列表 firewall-cmd --list-ports 运行结果如下&#xff1a; linux 追加防火墙经放行端口&#xff08;如追加443&#xff09; firewall-cmd --zonepublic --add-port443/tcp --permanent 亲测有效&#xff01;

数据结构 模拟实现LinkedList单向不循环链表

目录 一、链表的简单介绍 二、链表的接口 三、链表的方法实现 &#xff08;1&#xff09;display方法 &#xff08;2&#xff09;size得到单链表的长度方法 &#xff08;3&#xff09;addFirst头插方法 &#xff08;4&#xff09;addLast尾插方法 &#xff08;5&#xf…

美团到店终端从标准化到数字化的演进之路

总第580篇 | 2023年第032篇 本文整理自美团技术沙龙第76期《大前端研发协同效能提升与实践》。前端团队在产研多角色协同形式上存在不同阶段&#xff0c;而大前端多技术栈在各阶段都有其独特的实践&#xff0c;同时又有类似的演进路线。本文从到店终端团队移动端和前端技术栈持…

Linux学习第48天:Linux USB驱动试验:保持热情,保持节奏,持续学习是作为一个技术人员应有的基本素质和要求

Linux版本号4.1.15 芯片I.MX6ULL 大叔学Linux 品人间百味 思文短情长 最近更新的速度和频率大不如以前&#xff0c;主要原因还是自己有些懈怠了。学习是一个持续努力的过程&#xff0c;一旦中断&#xff0c;再想保持以往的状态可能要…

轻量封装WebGPU渲染系统示例<55>- 顶点数据更新

当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/feature/material/src/voxgpu/sample/VertexUpdateTest.ts 当前示例运行效果: ​​​​​​​ 此示例基于此渲染系统实现&#xff0c;当前示例TypeScript源码如下: export class VertexUpdateTest {pr…

【实用工具】vim常用命令

快速移动(上下左右箭头可替代) 左移 h 右移 l 下移 j 上移 K在本行操作 0 移动到本行行首 ^ 移动到本行的第一个不是 blank 字符 $ 移动到本行行尾 w 光标移动到下一个单词的开头 e 光标移动到下一个单词的结尾跨行移动光标 nG 光标定位到第n行的行首 gg 光标定位到第一行的…

dll不能运行是什么意思,分享5种有效的修复方法

在计算机使用过程中&#xff0c;我们可能会遇到各种各样的问题&#xff0c;其中一种常见的问题是“dll不能运行”。这个问题可能会影响到我们的正常使用&#xff0c;甚至导致某些软件无法启动。那么&#xff0c;“dll不能运行是什么意思”呢&#xff1f;dll文件丢失怎么恢复&am…

下载大模型,保存阿里云盘

一、解决场景 下载模型或数据集&#xff0c;到国内云GPU平台、阿里云盘&#xff08;便于持久化储存&#xff0c;或者分享朋友&#xff09;。 及时收藏&#xff0c;下次还能找到&#xff01; 二、优势 此方法可以避免大文件下载到本地——占用内存&#xff0c;受到小带宽网络…