OpenCV实战 -- 维生素药片的检测记数

文章目录

  • 检测记数
    • 原图
    • 经过操作
    • 开始进行消除粘连性--形态学变换
    • 总结实现方法
      • 1. 读取图片:
      • 2. 形态学处理:
      • 3. 二值化:
      • 4. 提取轮廓:
      • 5. 轮廓筛选和计数:
    • 分水岭算法:
      • 逐行解释
      • 在基于距离变换的分水岭算法中,二值化操作是为了得到`sure_fg`(肯定是前景的区域),以便将其用作分水岭算法的标记点。这个过程涉及以下几步:

读取图片
形态学处理
二值化
提取轮廓
获取轮廓索引,并筛选所需要的轮廓
画出轮廓,显示计数

检测记数

原图-》灰度化-》阈值分割-》形态学变换-》距离变换-》轮廓查找
在这里插入图片描述

原图

在这里插入图片描述

import cv2 as cv
import matplotlib.pyplot as pltimage = cv.imread('img/img.png')
gray_image = cv.cvtColor(image, cv.COLOR_BGR2GRAY)ret, binary = cv.threshold(gray_image, 127, 255, cv.THRESH_BINARY)# 寻找轮廓
contours, hierarchy = cv.findContours(binary, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)# 在原始图像的副本上绘制轮廓并标注序号
image_with_contours = image.copy()
for i, contour in enumerate(contours):cv.drawContours(image_with_contours, [contour], -1, (122, 55, 215), 2)# 标注轮廓序号cv.putText(image_with_contours, str(i+1), tuple(contour[0][0]), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)# 使用 matplotlib 显示结果
plt.subplot(121), plt.imshow(cv.cvtColor(image, cv.COLOR_BGR2RGB)), plt.title('Original Image')
plt.subplot(122), plt.imshow(cv.cvtColor(image_with_contours, cv.COLOR_BGR2RGB)), plt.title('Image with Contours')
plt.show()
print (len(contours))

在这里插入图片描述

经过操作

发现其具有粘连性,所以阈值分割、形态学变换等图像处理
在这里插入图片描述

开始进行消除粘连性–形态学变换

import numpy as np
import cv2 as cv
import matplotlib.pyplot as pltimage = cv.imread('img/img.png')
gray_image= cv.cvtColor(image, cv.COLOR_BGR2GRAY)
kernel = np.ones((16, 16), np.uint8)
gray_image=cv.morphologyEx(gray_image, cv.MORPH_OPEN, kernel)
ret, binary = cv.threshold(gray_image, 127, 255, cv.THRESH_BINARY)# 寻找轮廓
contours, hierarchy = cv.findContours(binary, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)# 在原始图像的副本上绘制轮廓并标注序号
image_with_contours = image.copy()
for i, contour in enumerate(contours):cv.drawContours(image_with_contours, [contour], -1, (122, 55, 215), 2)# 标注轮廓序号cv.putText(image_with_contours, str(i+1), tuple(contour[0][0]), cv.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)# 使用 matplotlib 显示结果
plt.subplot(121), plt.imshow(cv.cvtColor(image, cv.COLOR_BGR2RGB)), plt.title('Original Image')
plt.subplot(122), plt.imshow(cv.cvtColor(image_with_contours, cv.COLOR_BGR2RGB)), plt.title('Image with Contours')
plt.show()print (len(contours))

在这里插入图片描述

总结实现方法

1. 读取图片:

import cv2# 读取图片
image = cv2.imread("path/to/your/image.png")
cv2.imshow("Original Image", image)
cv2.waitKey(0)

2. 形态学处理:

import cv2
import numpy as np# 形态学处理
kernel = np.ones((16, 16), np.uint8)
morphology_result = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)
cv2.imshow("Morphology Result", morphology_result)
cv2.waitKey(0)

3. 二值化:

import cv2# 灰度转换
gray_image = cv2.cvtColor(morphology_result, cv2.COLOR_BGR2GRAY)# 二值化
_, binary_image = cv2.threshold(gray_image, 100, 255, cv2.THRESH_OTSU)
cv2.imshow("Binary Image", binary_image)
cv2.waitKey(0)

4. 提取轮廓:

import cv2# 寻找轮廓
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)# 在原图上绘制轮廓
contour_image = image.copy()
cv2.drawContours(contour_image, contours, -1, (0, 255, 0), 2)
cv2.imshow("Contours", contour_image)
cv2.waitKey(0)

5. 轮廓筛选和计数:

import cv2# 遍历轮廓
for i, contour in enumerate(contours):area = cv2.contourArea(contour)if area < 500:continue# 获取轮廓的位置(x, y, w, h) = cv2.boundingRect(contour)# 在原图上绘制矩形cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)# 在矩形位置写上计数cv2.putText(image, str(i), (x, y), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)cv2.imshow("Count Result", image)
cv2.waitKey(0)

分水岭算法:

import cv2
import numpy as np# 读取图片
image = cv2.imread("path/to/your/image.png")
cv2.imshow("Original Image", image)# 形态学处理
kernel = np.ones((3, 3), np.uint8)
morphology_result = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)
cv2.imshow("Morphology Result", morphology_result)# 灰度转换
gray_image = cv2.cvtColor(morphology_result, cv2.COLOR_BGR2GRAY)# 二值化
_, binary_image = cv2.threshold(gray_image, 100, 255, cv2.THRESH_OTSU)
cv2.imshow("Binary Image", binary_image)# 寻找轮廓
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)# 统计药片数量并标记轮廓
count = 0
for i, contour in enumerate(contours):area = cv2.contourArea(contour)if area < 500:continue# 获取轮廓的位置(x, y, w, h) = cv2.boundingRect(contour)# 在原图上绘制矩形cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)# 在矩形位置写上计数cv2.putText(image, str(count), (x, y), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)count += 1cv2.imshow("Count Result", image)
print("药片检测个数:", count)cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

逐行解释

当然,让我们逐行解释上述代码:

import cv2
import numpy as np# 读取图片
image = cv2.imread("path/to/your/image.png")
cv2.imshow("Original Image", image)
  • 导入OpenCV库和NumPy库。
  • 读取图片并显示原始图像。
# 形态学处理
kernel = np.ones((3, 3), np.uint8)
morphology_result = cv2.morphologyEx(image, cv2.MORPH_OPEN, kernel)
cv2.imshow("Morphology Result", morphology_result)
  • 定义一个3x3的矩形内核(kernel)。
  • 对原始图像进行形态学开运算,去除小的噪点和不重要的细节。
  • 显示形态学处理后的图像。
# 灰度转换
gray_image = cv2.cvtColor(morphology_result, cv2.COLOR_BGR2GRAY)
  • 将形态学处理后的图像转换为灰度图。
# 二值化
_, binary_image = cv2.threshold(gray_image, 100, 255, cv2.THRESH_OTSU)
cv2.imshow("Binary Image", binary_image)
  • 对灰度图进行自适应阈值二值化,使用OTSU算法。
  • 显示二值化后的图像。
# 寻找轮廓
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
  • 寻找二值化后图像中的外部轮廓。
# 统计药片数量并标记轮廓
count = 0
for i, contour in enumerate(contours):area = cv2.contourArea(contour)if area < 500:continue# 获取轮廓的位置(x, y, w, h) = cv2.boundingRect(contour)# 在原图上绘制矩形cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)# 在矩形位置写上计数cv2.putText(image, str(count), (x, y), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)count += 1cv2.imshow("Count Result", image)
print("药片检测个数:", count)
  • 初始化药片计数为0。
  • 遍历所有找到的轮廓。
    • 如果轮廓的面积小于500,则跳过。
    • 获取轮廓的位置信息(矩形边界框)。
    • 在原图上绘制矩形,标记检测到的药片。
    • 在矩形位置写上计数。
    • 计数加1。
  • 显示标记了计数的结果图像,并输出药片检测个数。
cv2.waitKey(0)
cv2.destroyAllWindows()
  • 等待用户按下任意按键,然后关闭所有打开的窗口。

在基于距离变换的分水岭算法中,二值化操作是为了得到sure_fg(肯定是前景的区域),以便将其用作分水岭算法的标记点。这个过程涉及以下几步:

  1. 距离变换: 通过距离变换,我们得到了一个灰度图,其中像素值表示每个像素到最近的零像素点的距离。这个距离图范围是浮点数,通常需要进行归一化。

    dist_transform = cv2.distanceTransform(binary_image, cv2.DIST_L2, 3)
    
  2. 归一化: 将距离变换后的图像进行归一化,使其范围在0到1之间。

    normalized_distance = cv2.normalize(dist_transform, 0, 1, cv2.NORM_MINMAX)
    
  3. 再次二值化: 对归一化后的图像进行二值化,以获取肯定是前景的区域。这是通过设置一个阈值,将距离较大的区域认定为前景。

    _, sure_fg = cv2.threshold(normalized_distance, 0.4, 1, cv2.THRESH_BINARY)
    

这样,sure_fg 中的像素值为 1 的区域就被认为是明确的前景区域,而不是可能的边界区域。这种区域将被用作分水岭算法的种子点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/587824.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

关于链表的一些问题

求链表的中间节点 可以定义两个指针&#xff0c;一个一次走两步一个一次走一步&#xff0c;当走的快的走到NULL时&#xff0c;走的慢的就是链表的中间节点。&#xff08;此法求出的偶数个节点的链表的中间节点是它中间的第二个&#xff09; 求倒数第K个节点 也可以定义两个指…

PowerShell Instal 一键部署gitea

gitea 前言 Gitea 是一个轻量级的 DevOps 平台软件。从开发计划到产品成型的整个软件生命周期,他都能够高效而轻松的帮助团队和开发者。包括 Git 托管、代码审查、团队协作、软件包注册和 CI/CD。它与 GitHub、Bitbucket 和 GitLab 等比较类似。 Gitea 最初是从 Gogs 分支而来…

新手快速上手掌握基础排序<一>

目录 引言 一&#xff1a;两数互换排序 1.画图分析 2.代码实现 二&#xff1a;三数换交换排序 1.例题举例 2.代码实现 3.再比如四数互换排序&#xff0c;也可以使用两数互换的方法来实现 &#xff0c;但最好使用基础的排序方法(冒泡法&#xff0c;选择法) 三&#xf…

PointNet人工智能深度学习简明图解

PointNet 是一种深度网络架构&#xff0c;它使用点云来实现从对象分类、零件分割到场景语义解析等应用。 它于 2017 年实现&#xff0c;是第一个直接将点云作为 3D 识别任务输入的架构。 本文的想法是使用 Pytorch 实现 PointNet 的分类模型&#xff0c;并可视化其转换以了解模…

【python】爬取百度热搜排行榜Top50+可视化【附源码】【送数据分析书籍】

一、导入必要的模块&#xff1a; 这篇博客将介绍如何使用Python编写一个爬虫程序&#xff0c;从斗鱼直播网站上获取图片信息并保存到本地。我们将使用requests模块发送HTTP请求和接收响应&#xff0c;以及os模块处理文件和目录操作。 如果出现模块报错 进入控制台输入&#xff…

android开发调用百度地图api实现加载地图和定位

目录 一.踩的一些坑以及解决方法 1.权限声明不要少 2.地图初始化 3.定位问题 &#xff08;1&#xff09;监听器注册 &#xff08;2&#xff09;定位监听器类MyLocationListener的实现 &#xff08;3&#xff09;定位功能的调用 4.android studio连接真机调试问题 二.…

MySQL:索引

MySQL官方对索引的定义为: 索引 (Index) 是帮助MySQL高效获取数据的数据结构。 提取句子主干&#xff0c;就可以得到索引的本质:索引是数据结构。 1. 什么是索引&#xff0c;索引的作用 索引是一种用于快速查询和检索数据的数据结构&#xff0c;帮助mysql提高查询效率的数据…

ros2查看launch文件内需要提供的参数(接口):

格式&#xff1a;ros2 launch --show-args 包名称 launch文件名称 例如&#xff1a; ros2 launch --show-args ros_gz_sim gz_sim.python.py

行人重识别优化:Pose-Guided Feature Alignment for Occluded Person Re-Identification

文章记录了ICCV2019的一篇优化遮挡行人重识别论文的知识点&#xff1a;Pose-Guided Feature Alignment for Occluded Person Re-Identification 论文地址&#xff1a; https://yu-wu.net/pdf/ICCV2019_Occluded-reID.pdf Partial Feature Branch分支: PCB结构&#xff0c;将…

精致旅游网ROXANDREA 网页设计 html模板

一、需求分析 旅游网站通常具有多种功能&#xff0c;以下是一些常见的旅游网站功能&#xff1a; 酒店预订&#xff1a;旅游网站可以提供酒店预订服务&#xff0c;让用户搜索并预订符合其需求和预算的酒店房间。 机票预订&#xff1a;用户可以通过旅游网站搜索、比较和预订机票…

JavaScript 工具库 | PrefixFree给CSS自动添加浏览器前缀

新版的CSS拥有多个新属性&#xff0c;而标准有没有统一&#xff0c;有的浏览器厂商为了吸引更多的开发者和用户&#xff0c;已经加入了最新的CSS属性支持&#xff0c;这其中包含了很多炫酷的功能&#xff0c;但是我们在使用的时候&#xff0c;不得不在属性前面添加这些浏览器的…

Java项目:102SSM汽车租赁系统

博主主页&#xff1a;Java旅途 简介&#xff1a;分享计算机知识、学习路线、系统源码及教程 文末获取源码 一、项目介绍 汽车租赁系统基于SpringSpringMVCMybatis开发&#xff0c;系统使用shiro框架做权限安全控制&#xff0c;超级管理员登录系统后可根据自己的实际需求配角色…

uniapp的css样式图片大小截图展示

目录 截取图片前截取图片后第一种方式&#xff1a;代码第二种方式&#xff1a;代码最后 截取图片前 截取图片后 第一种方式&#xff1a;代码 <view class"swiper-box-img"><image class"swiper-box-img-img" :src"item.file_path" mod…

Windows系统历史版本简介详细版

学习目标&#xff1a; 目录 学习目标&#xff1a; 学习内容&#xff1a; 学习产出&#xff1a; Windows 11的全新用户界面设计&#xff1a;学习新的任务栏、开始菜单、窗口管理等界面元素的使用与操作。 Windows 11的新功能和特点&#xff1a;学习新的虚拟桌面、Microsoft Team…

【Latex错误:】Package fontspec: The font “SIMLI“ cannot be found. LaTex [行 37,列1]

【Latex错误&#xff1a;】Package fontspec: The font "SIMLI" cannot be found. LaTex [行 37&#xff0c;列1] 解决方案 错误详情如下图所示&#xff1a; 最近使用latex写毕业论文&#xff0c;效率是快&#xff0c;但是出些一些错误就难得搞了&#xff0c;上面的…

2023年终总结丨很苦,很酷!

文章目录 个人简介丨了解博主写在前面丨博主介绍年终总结丨博主成就年终总结丨博主想说年终总结丨学习芝士年终总结丨未来展望写在后面丨新年快乐 个人简介丨了解博主 主页地址&#xff1a;https://blog.csdn.net/m0_68111267 荣誉身份 ⭐2022年度CSDN 社区之星 Top6 ⭐2023年…

什么是SEO?

什么是SEO&#xff1f; SEO代表“搜索引擎优化”。这是通过非付费&#xff08;也称为“自然”&#xff09;搜索引擎结果来提高网站流量的质量和数量以及品牌曝光率的做法。 尽管有首字母缩略词&#xff0c;但 SEO 既关乎搜索引擎本身&#xff0c;也关乎人。这是关于了解人们在…

有了向量数据库,我们还需 SQL 数据库吗?

“除了向量数据库外&#xff0c;我是否还需要一个普通的 SQL 数据库&#xff1f;” 这是我们经常被问到的一个问题。如果除了向量数据以外&#xff0c;用户还有其他标量数据信息&#xff0c;那么其业务可能需要在进行语义相似性搜索前先根据某种条件过滤数据&#xff0c;例如&a…

文心一言 VS 讯飞星火 VS chatgpt (168)-- 算法导论13.2 1题

一、用go语言&#xff0c;写出 RIGHT-ROTATE 的伪代码。 文心一言&#xff1a; 在计算机科学中&#xff0c;右旋转&#xff08;RIGHT-ROTATE&#xff09;是一种常见的操作&#xff0c;通常用于数组或链表。以下是一个使用Go语言实现右旋转的伪代码&#xff1a; func rightRo…

计算机组成原理复习7

内存管理 文章目录 内存管理存储器概述存储器的分类按在计算机中的作用&#xff08;层次&#xff09;分类按存储介质分类按存取方式分类按信息的可保存性分类 存储器的性能指标存储容量单位成本存储速度&#xff1a;数据传输率数据的宽度/存储周期 存储器的层次化结构多级存储系…