开源地址:
GitHub - THUDM/ChatGLM3: ChatGLM3 series: Open Bilingual Chat LLMs | 开源双语对话语言模型
前言:ChatGLM2与ChatGLM3区别
ChatGLM2与ChatGLM3模型架构是完全一致的,ChatGLM与后继者结构不同。可见ChatGLM3相对于ChatGLM2没有模型架构上的改进。
相对于ChatGLM,ChatGLM2、ChatGLM3模型上的变化:
- 词表的大小从ChatGLM的150528缩小为65024 (一个直观的体验是ChatGLM2、3加载比ChatGLM快不少)
- 位置编码从每个GLMBlock一份提升为全局一份
- SelfAttention之后的前馈网络有不同。ChatGLM用GELU(Gaussian Error Linear Unit)做激活;ChatGLM用Swish-1做激活。而且ChatGLM2、3应该是修正了之前的一个bug,因为GLU(Gated Linear Unit)本质上一半的入参是用来做门控制的,不需要输出到下层,所以ChatGLM2、3看起来前后维度不一致(27392->13696)反而是正确的。
ChatGLM2与ChatGLM区别
ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性:
更强大的性能:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能取得了大幅度的提升,在同尺寸开源模型中具有较强的竞争力。
更长的上下文:基于 FlashAttention 技术,我们将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练,允许更多轮次的对话。但当前版本的 ChatGLM2-6B 对单轮超长文档的理解能力有限,我们会在后续迭代升级中着重进行优化。
更高效的推理:基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。
更开放的协议:ChatGLM2-6B 权重对学术研究完全开放,在获得官方的书面许可后,亦允许商业使用。
1、本机安装gpu驱动,cuda,本文选定版本11.8
安装cuda toolkit CUDA Toolkit Archive | NVIDIA Developer
安装cudnn Log in | NVIDIA Developer (要注册帐号)
2、Anaconda,下载后可以通过这个软件安装一个python==3.10.11的版本
Free Download | Anacondahttps://www.anaconda.com/download或者下载一个pycharm ,用这个装个python环境
PyCharm:JetBrains为专业开发者提供的Python IDEhttps://www.jetbrains.com.cn/pycharm/
安装好Python后最好设定一下源!
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
3,pytorch window版本,选cuda11.8
Start Locally | PyTorchStart Locallyhttps://pytorch.org/get-started/locally/
选中后得到安装脚本
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
运行如下图:
4、环境安装
首先需要下载本仓库:
git clone https://github.com/THUDM/ChatGLM3
cd ChatGLM3
然后使用 pip 安装依赖:
pip install -r requirements.txt
5、 下载模型,有两种方法
方法1,可以自定路径,
git lfs install
git clone https://www.modelscope.cn/ZhipuAI/chatglm3-6b.git
方法2,使用python代码下载,会下载到c盘C:\Users\用户名\.cache\modelscope\,大约10多个G,对于我C盘只有几十G剩余空间的贫困户来说不推荐。
from modelscope import snapshot_download
model_dir = snapshot_download("ZhipuAI/chatglm3-6b", revision = "v1.0.0")
加个参数local_dir='./model_glm3-6b'
from modelscope import AutoTokenizer, AutoModel, snapshot_download
model_dir = snapshot_download("ZhipuAI/chatglm3-6b", revision = "v1.0.0",local_dir='./model_glm3-6b')
运行模型
from modelscope import AutoTokenizer, AutoModel, snapshot_download
model_dir = snapshot_download("ZhipuAI/chatglm3-6b", revision = "v1.0.0",cache_dir='./model_glm3-6b')
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).half().cuda()
#model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).quantize(4).cuda()
model = model.eval()
# response, history = model.chat(tokenizer, "你好", history=[])
# print(response)
response, history = model.chat(tokenizer, "晚上睡不着应该怎么办", history=[])
print(response)
注意,
-
.half()
方法:model.half()
将模型的参数类型转换为 16 位浮点数(half-precision floating-point)。这有助于减少模型在内存和显存中的占用空间,同时在支持 GPU 的设备上提高模型推理速度。- 16 位浮点数的优势在于,相较于 32 位浮点数,它使用更少的内存,并且在支持混合精度计算的 GPU 上,可以提高计算速度。这样模型点用的显存为6B*2约等于12G
-
.quantize(4)
方法:model.quantize(4)
是模型的量化操作。这将模型的权重和激活缩放到 4 位整数。量化是一种技术,通过减少模型中参数的表示位数,以减小模型的内存占用和提高推理速度。- 4 位整数的量化会带来更高的压缩比,但可能会引入量化误差,因为只有有限的整数可以表示模型的权重和激活。这样模型点用的显存为6B*0.5约等于3G,
3.quantize(8)
: 这将模型的参数和激活值量化为 8 位整数。使用 8 位整数相对于 4 位整数来说,具有更高的位宽,因此可以表示更大的范围和更精细的数值,减小了量化误差。8 位整数的量化通常仍然可以显著减小模型的尺寸,同时保留较高的模型精度。 这样模型点用的显存为6B*1约等于6G
我在使用量化时报错Failed to load cpm_kernels:[WinError 267] 目录名称无效。: 'C:\\Windows\\System32\\WindowsPowerShell\\v1.0\\powershell.exe'
当使用quantize(4)
方法时会报错
blockDim = (min(round_up(m, 32), 1024), 1, 1)
NameError: name 'round_up' is not defined
貌似代码实现有问题,改成quantize(8)就可以了,反正我使用的1080ti用quantize(8)也勉强够用。
上代码,可以运行的两种方式,打开basic_demo目录
改进cli_demo.py
增加
os.environ['MODEL_PATH'] = r'C:\Users\gpu\.cache\modelscope\hub\ZhipuAI\chatglm3-6b'
整体代码
import os
import platform
from transformers import AutoTokenizer, AutoModel
os.environ['MODEL_PATH'] = r'C:\Users\gpu\.cache\modelscope\hub\ZhipuAI\chatglm3-6b'
MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/chatglm3-6b')
TOKENIZER_PATH = os.environ.get("TOKENIZER_PATH", MODEL_PATH)tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH, trust_remote_code=True)
#model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True, device_map="auto").eval()
model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True ).quantize(8).cuda()
os_name = platform.system()
clear_command = 'cls' if os_name == 'Windows' else 'clear'
stop_stream = Falsewelcome_prompt = "欢迎使用 ChatGLM3-6B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序"def build_prompt(history):prompt = welcome_promptfor query, response in history:prompt += f"\n\n用户:{query}"prompt += f"\n\nChatGLM3-6B:{response}"return promptdef main():past_key_values, history = None, []global stop_streamprint(welcome_prompt)while True:query = input("\n用户:")if query.strip() == "stop":breakif query.strip() == "clear":past_key_values, history = None, []os.system(clear_command)print(welcome_prompt)continueprint("\nChatGLM:", end="")current_length = 0for response, history, past_key_values in model.stream_chat(tokenizer, query, history=history, top_p=1,temperature=0.01,past_key_values=past_key_values,return_past_key_values=True):if stop_stream:stop_stream = Falsebreakelse:print(response[current_length:], end="", flush=True)current_length = len(response)print("")if __name__ == "__main__":main()
运行 python cli_demo.py 就可以在命令行中愉快使用
打开basic_demo目录
改进web_demo_streamlit.py,也是在头部增加了
os.environ['MODEL_PATH'] = r'C:\Users\gpu\.cache\modelscope\hub\ZhipuAI\chatglm3-6b'
"""
This script is a simple web demo based on Streamlit, showcasing the use of the ChatGLM3-6B model. For a more comprehensive web demo,
it is recommended to use 'composite_demo'.Usage:
- Run the script using Streamlit: `streamlit run web_demo_streamlit.py`
- Adjust the model parameters from the sidebar.
- Enter questions in the chat input box and interact with the ChatGLM3-6B model.Note: Ensure 'streamlit' and 'transformers' libraries are installed and the required model checkpoints are available.
"""import os
import streamlit as st
import torch
from transformers import AutoModel, AutoTokenizer
os.environ['MODEL_PATH'] = r'D:\ChatGLM3\model_glm3-6b\ZhipuAI\chatglm3-6b'
MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/chatglm3-6b')
TOKENIZER_PATH = os.environ.get("TOKENIZER_PATH", MODEL_PATH)st.set_page_config(page_title="ChatGLM3-6B Streamlit Simple Demo",page_icon=":robot:",layout="wide"
)@st.cache_resource
def get_model():tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH, trust_remote_code=True)#model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True, device_map="auto").eval()model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True).quantize(8).cuda()return tokenizer, model# 加载Chatglm3的model和tokenizer
tokenizer, model = get_model()if "history" not in st.session_state:st.session_state.history = []
if "past_key_values" not in st.session_state:st.session_state.past_key_values = Nonemax_length = st.sidebar.slider("max_length", 0, 32768, 8192, step=1)
top_p = st.sidebar.slider("top_p", 0.0, 1.0, 0.8, step=0.01)
temperature = st.sidebar.slider("temperature", 0.0, 1.0, 0.6, step=0.01)buttonClean = st.sidebar.button("清理会话历史", key="clean")
if buttonClean:st.session_state.history = []st.session_state.past_key_values = Noneif torch.cuda.is_available():torch.cuda.empty_cache()st.rerun()for i, message in enumerate(st.session_state.history):if message["role"] == "user":with st.chat_message(name="user", avatar="user"):st.markdown(message["content"])else:with st.chat_message(name="assistant", avatar="assistant"):st.markdown(message["content"])with st.chat_message(name="user", avatar="user"):input_placeholder = st.empty()
with st.chat_message(name="assistant", avatar="assistant"):message_placeholder = st.empty()prompt_text = st.chat_input("请输入您的问题")
if prompt_text:input_placeholder.markdown(prompt_text)history = st.session_state.historypast_key_values = st.session_state.past_key_valuesfor response, history, past_key_values in model.stream_chat(tokenizer,prompt_text,history,past_key_values=past_key_values,max_length=max_length,top_p=top_p,temperature=temperature,return_past_key_values=True,):message_placeholder.markdown(response)st.session_state.history = historyst.session_state.past_key_values = past_key_values
运行这个代码 :
streamlit run web_demo_streamlit.py
(venv) PS D:\ChatGLM3> cd .\basic_demo\
(venv) PS D:\ChatGLM3\basic_demo> streamlit run web_demo_streamlit.py
You can now view your Streamlit app in your browser.
Local URL: http://localhost:8501
Network URL: http://10.10.10.251:8501
会出现一个网页(注代码中模型均已使用quantize(8).cuda()量化)
另外一个web_demo_gradio.py运行起来有问题,这里就不描述了,运行方法同上,
默认情况下,模型以 FP16 精度加载,运行上述代码需要大概 13GB 显存。如果你的 GPU 显存有限,可以尝试以量化方式加载模型,使用方法如下:
model = AutoModel.from_pretrained("THUDM/chatglm3-6b",trust_remote_code=True).quantize(4).cuda()
模型量化会带来一定的性能损失
CPU 部署
如果你没有 GPU 硬件的话,也可以在 CPU 上进行推理,但是推理速度会更慢。使用方法如下(需要大概 32GB 内存)
model = AutoModel.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True).float()
下一步开始进行微调,进入到
.\finetune_chatmodel_demo 目录
在windows下直接安装deepspeed会报错
改为 pip install deepspeed==0.3.16 就没有问题了
原requirement.txt改为
由
transformers>=4.36.2
deepspeed
datasets>=2.16.0
astunparse>=1.6.3
accelerate>=0.25.0
sentencepiece>=0.1.99
改为
transformers>=4.36.2
deepspeed==0.3.16
datasets>=2.16.0
astunparse>=1.6.3
accelerate>=0.25.0
sentencepiece>=0.1.99
整体成功!
参考文献
ChatGLM、ChatGLM2、ChatGLM3模型架构对比 - 知乎 (zhihu.com)
ChatGLM2-6B、ChatGLM-6B 模型介绍及训练自己数据集,2080TI显卡全流程实战 - 知乎 (zhihu.com)