pytorch01:概念、张量操作、线性回归与逻辑回归

目录

  • 一、pytorch介绍
    • 1.1pytorch简介
    • 1.2发展历史
    • 1.3pytorch优点
  • 二、张量简介与创建
    • 2.1什么是张量?
    • 2.2Tensor与Variable
    • 2.3张量的创建
      • 2.3.1 直接创建torch.tensor()
      • 2.3.2 从numpy创建tensor
    • 2.4根据数值创建
      • 2.4.1 torch.zeros()
      • 2.4.2 torch.zeros_like()
      • 2.4.3 torch.ones()和torch.ones_like()
      • 2.4.4 torch.full()和torch.full_like()
      • 2.4.5 torch.arange()
      • 2.4.6 torch.linspace()
      • 2.4.7 torch.logspace()
      • 2.4.8 torch.eye()
    • 2.5依概率分布创建张量
      • 2.5.1 torch.normal()
      • 2.5.2 torch.randn()和torch.randn_like()
      • 2.5.3 torch.randint ()和torch.randint_like()
      • 2.5.4 torch.randperm()
      • 2.5.5 torch.bernoulli()
  • 三、张量的操作
    • 3.1 张量拼接与切分
      • 3.1.1 torch.cat()
      • 3.1.2 torch.stack()
      • 3.1.3 torch.chunk()
      • 3.1.4 torch.split()
    • 3.2 张量索引
      • 3.2.1 torch.index_select()
      • 3.2.2 torch.masked_select()
    • 3.3 张量变换
      • 3.3.1 torch.reshape()
      • 3.3.2 torch.transpose()
      • 3.3.3 torch.t()
      • 3.3.4 torch.squeeze()
      • 3.3.5 torch.unsqueeze()
  • 四、张量的运算
    • torch.add()
  • 五、线性回归
    • 5.1线性回归概念
    • 5.2 求解步骤
    • 5.3线性回归代码实现
  • 六、动态图机制
    • 6.1计算图基本概念
    • 6.2 计算图梯度求导
    • 6.3 叶子结点
    • 代码实现
      • 查看叶子结点
      • 查看梯度
      • 查看梯度计算方法
    • 6.4 动态图
      • 6.4.1pytorch动态图
      • 6.4.2TensorFlow静态图
  • 七、逻辑回归
    • 7.1 torch.autograd自动求导系统
      • 7.1.1 torch.autograd.backward
      • 7.1.2 torch.autograd.grad
      • 7.1.3 自动求导系统注意事项
    • 7.2逻辑回归
      • 7.2.1 线性回归与对数回归的区别
      • 7.2.2 逻辑回归代码实现

一、pytorch介绍

1.1pytorch简介

2017年1月,FAIR (FacebookAI Research) 发布PyTorch,PyTorch是在Torch基础上用python语言重新打造的一款深度学习框架,Torch 是采用Lua语言为接口的机器学习框架,但因Lua语言较为小众导致Torch知名度不高。

1.2发展历史

  • 2017年1月正式发布PyTorch
  • 2018年4月更新0.4.0版,支持Windows系统,caffe2正式并入PyTorch
  • 2018年11月更新1.0稳定版,已GitHub 增长第二快的开源项目
  • 2019年5月更新1.1.0版,支持TensorBoard,增强可视化功能
  • 2019年8月更新1.2.0版,更新torchvision,torchaudio 和torchtext,增加更多功能
    2014年10月至2018年02月arXiv论文中深度学习框架提及次数统计,PyTorch的增长速度与TensorFlow一致。
    在这里插入图片描述

1.3pytorch优点

  • 上手快: 掌握Numpy和基本深度学习概念即可上手
  • 代码简洁灵活: 用nn.module封装使网络搭建更方便;基于动态图机制,更灵活
  • Debug方便: 调试PyTorch就像调试 Python 代码一样简单
  • 文档规范:https://pytorch.org/docs/可查各版本文档
  • 资源多: arXiv中的新算法大多有PyTorch实现
  • 开发者多:GitHub上贡献者(Contributors)已超过1100+
  • 背靠大树: FaceBook维护开发

二、张量简介与创建

2.1什么是张量?

张量是一个多维数组,它是标量、向量、矩阵的高维拓展
在深度学习中,张量(tensor)是一个广泛使用的数学和计算工具,它是多维数组的泛化。以下是对深度学习中张量的一些解释:

1.数据结构: 张量是一个多维数组,可以是一个标量(0维张量,即一个数)、向量(1维张量,例如一行或一列数字)、矩阵(2维张量,例如一个表格或图像)、或者更高维度的数组。
2.Rank(秩): 张量的秩表示张量的维度数量。例如,标量的秩是0,向量的秩是1,矩阵的秩是2。通常,深度学习中的张量秩是可以很大的,因为神经网络中的数据通常是高维的。
3.形状: 张量的形状描述了它每个维度上的大小。例如,一个形状为 (3, 4) 的张量表示一个 3 行 4 列的矩阵。
4.类型: 张量可以包含不同类型的数据,例如整数、浮点数等。在深度学习中,通常使用浮点数张量。
5.操作: 张量上可以进行各种数学运算,如加法、减法、乘法等。这些操作是深度学习中神经网络的基础。
6.自动微分: 在深度学习中,张量通常与自动微分结合使用。自动微分是通过计算图和链式法则来计算梯度,用于训练神经网络。
7.存储和计算优化: 张量在内存中的存储方式通常是连续的,这有助于在硬件上进行高效的计算。深度学习框架使用张量来表示神经网络的参数和输入输出。
8.GPU 加速: 张量的并行性和规则结构使得深度学习中的许多计算可以受益于 GPU 的并行计算能力。因此,深度学习框架通常支持在 GPU 上进行张量操作。

在常见的深度学习框架(如 TensorFlow、PyTorch等)中,张量是核心数据结构,它们提供了丰富的操作和函数来处理张量,支持自动微分、梯度下降等算法,使得深度学习模型的实现更加方便和高效。

在这里插入图片描述

2.2Tensor与Variable

Variable是torch.autograd中的数据类型主要用于封装Tensor,进行自动求导

data: 被包装的Tensor
grad: data的梯度
grad fn: 创建Tensor的Function,是自动求导的关键
requires_grad: 指示是否需要梯度
is leaf: 指示是否是叶子结点 (张量)

在这里插入图片描述

2.3张量的创建

2.3.1 直接创建torch.tensor()

torch.tensor()
功能:从data创建tensor
在这里插入图片描述
• data: 数据, 可以是list, numpy
• dtype : 数据类型,默认与data的一致
• device : 所在设备, cuda/cpu
• requires_grad:是否需要梯度
• pin_memory:是否存于锁页内存

2.3.2 从numpy创建tensor

torch.from_numpy(ndarray)

注意事项: 从torch.from_numpy创建的tensor于原ndarray共享内存,当修改其中一个的数据,另外一个也将会被改动

在这里插入图片描述

2.4根据数值创建

2.4.1 torch.zeros()

功能:依size创建全0张量
在这里插入图片描述
• size: 张量的形状, 如(3, 3)、(3, 224,224)
• out : 输出的张量
• layout : 内存中布局形式, 有strided,sparse_coo等
• device : 所在设备, gpu/cpu
• requires_grad:是否需要梯度

2.4.2 torch.zeros_like()

功能:依input形状创建全0张量
在这里插入图片描述

• intput: 创建与input同形状的全0张量
• dtype : 数据类型
• layout : 内存中布局形式

2.4.3 torch.ones()和torch.ones_like()

功能:依input形状创建全1张量
在这里插入图片描述
在这里插入图片描述
• size: 张量的形状, 如(3, 3)、(3, 224,224)
• dtype : 数据类型
• layout : 内存中布局形式
• device : 所在设备, gpu/cpu
• requires_grad:是否需要梯度

2.4.4 torch.full()和torch.full_like()

功能:依input形状创建指定数据的张量
在这里插入图片描述

• size: 张量的形状, 如(3, 3)
• fill_value : 张量的值

2.4.5 torch.arange()

功能:创建等差的1维张量
在这里插入图片描述

注意事项:数值区间为[start, end)
• start : 数列起始值
• end : 数列“结束值”
• step: 数列公差,默认为1

2.4.6 torch.linspace()

功能:创建均分的1维张量
在这里插入图片描述

注意事项:数值区间为[start, end]
• start : 数列起始值
• end : 数列结束值
• steps: 数列长度

2.4.7 torch.logspace()

功能:创建对数均分的1维张量
在这里插入图片描述
注意事项:长度为steps, 底为base
• start : 数列起始值
• end : 数列结束值
• steps: 数列长度
• base : 对数函数的底,默认为10

2.4.8 torch.eye()

功能:创建单位对角矩阵( 2维张量)

在这里插入图片描述
注意事项:默认为方阵
• n: 矩阵行数
• m : 矩阵列数

2.5依概率分布创建张量

2.5.1 torch.normal()

功能:生成正态分布(高斯分布)
在这里插入图片描述

• mean : 均值
• std : 标准差

2.5.2 torch.randn()和torch.randn_like()

功能:生成标准正态分布
功能:在区间[0, 1)上,生成均匀分布
在这里插入图片描述
• size : 张量的形状

2.5.3 torch.randint ()和torch.randint_like()

功能:区间[low, high)生成整数均匀分布
在这里插入图片描述

• size : 张量的形状

2.5.4 torch.randperm()

功能:生成生成从0到n-1的随机排列
在这里插入图片描述

• n : 张量的长度

2.5.5 torch.bernoulli()

功能:以input为概率,生成伯努力分布(0-1分布,两点分布)
在这里插入图片描述
• input : 概率值

三、张量的操作

3.1 张量拼接与切分

3.1.1 torch.cat()

功能:将张量按维度dim进行拼接
在这里插入图片描述

• tensors: 张量序列
• dim : 要拼接的维度

3.1.2 torch.stack()

功能:在新创建的维度dim上进行拼接
在这里插入图片描述

• tensors:张量序列
• dim :要拼接的维度

3.1.3 torch.chunk()

功能:将张量按维度dim进行平均切分
在这里插入图片描述

返回值:张量列表
注意事项:若不能整除,最后一份张量小于其他张量
• input: 要切分的张量
• chunks : 要切分的份数
• dim : 要切分的维度

3.1.4 torch.split()

功能:将张量按维度dim进行切分
在这里插入图片描述

返回值:张量列表
• tensor: 要切分的张量
• split_size_or_sections : 为int时,表示每一份的长度;为list时,按list元素切分
• dim : 要切分的维度

3.2 张量索引

3.2.1 torch.index_select()

功能:在维度dim上,按index索引数据
在这里插入图片描述
返回值:依index索引数据拼接的张量
• input: 要索引的张量
• dim: 要索引的维度
• index : 要索引数据的序号

3.2.2 torch.masked_select()

功能:按mask中的True进行索引
在这里插入图片描述

返回值:一维张量
• input: 要索引的张量
• mask: 与input同形状的布尔类型张量

3.3 张量变换

3.3.1 torch.reshape()

功能:变换张量形状
在这里插入图片描述

注意事项:当张量在内存中是连续时,新张量与input共享数据内存
• input: 要变换的张量
• shape: 新张量的形状

3.3.2 torch.transpose()

功能:交换张量的两个维度
在这里插入图片描述

• input: 要变换的张量
• dim0: 要交换的维度
• dim1: 要交换的维度

3.3.3 torch.t()

功能:2维张量转置,对矩阵而言,等价于torch.transpose(input, 0, 1)
在这里插入图片描述

3.3.4 torch.squeeze()

功能:压缩长度为1的维度(轴)
在这里插入图片描述

• dim: 若为None,移除所有长度为1的轴;若指定维度,当且仅当该轴长度为1时,可以被移除;

3.3.5 torch.unsqueeze()

功能:依据dim扩展维度
在这里插入图片描述

• dim: 扩展的维度

四、张量的运算

在这里插入图片描述

torch.add()

功能:逐元素计算 input+alpha×other
• input: 第一个张量
• alpha: 乘项因子
• other: 第二个张量

五、线性回归

5.1线性回归概念

在这里插入图片描述

5.2 求解步骤

在这里插入图片描述

5.3线性回归代码实现

# -*- coding:utf-8 -*-import torch
import matplotlib.pyplot as plttorch.manual_seed(10)lr = 0.05  # 学习率# 创建训练数据
x = torch.rand(20, 1) * 10  # x data (tensor), shape=(20, 1)
y = 2 * x + (5 + torch.randn(20, 1))  # y data (tensor), shape=(20, 1)# 构建线性回归参数
w = torch.randn((1), requires_grad=True)
b = torch.zeros((1), requires_grad=True)for iteration in range(1000):# 前向传播  y=wx+bwx = torch.mul(w, x)y_pred = torch.add(wx, b)# 计算 MSE lossloss = (0.5 * (y - y_pred) ** 2).mean()# 损失反向传播来得到梯度gradloss.backward()# 更新参数b.data.sub_(lr * b.grad)  # sub_:原地减法操作w.data.sub_(lr * w.grad)# 清零张量的梯度w.grad.zero_()b.grad.zero_()# 绘图if iteration % 20 == 0:plt.scatter(x.data.numpy(), y.data.numpy())plt.plot(x.data.numpy(), y_pred.data.numpy(), 'r-', lw=5)plt.text(2, 20, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})plt.xlim(1.5, 10)plt.ylim(8, 28)plt.title("Iteration: {}\nw: {} b: {}".format(iteration, w.data.numpy(), b.data.numpy()))plt.pause(0.5)# 设置一个终止条件,当loss小于1的时候停止更新if loss.data.numpy() < 1:break

结果展示:
在这里插入图片描述
在这里插入图片描述

六、动态图机制

6.1计算图基本概念

计算图是用来描述运算的有向无环图计算图有两个主要元素:结点(Node)和边(Edge)结点表示数据,如向量,矩阵,张量边表示运算,如加减乘除卷积等用计算图表示:y = (x+ w) * (w+1);a = x + w ;b = w + 1 ;y = a * b
在这里插入图片描述

6.2 计算图梯度求导

在这里插入图片描述
求导流程如下:
在这里插入图片描述

6.3 叶子结点

叶子结点:用户创建的结点称为叶子结点,如X 与 W;在torch中有如下图属性,is_leaf: 指示张量是否为叶子结点。
grad_fn: 记录创建该张量时所用的方法(函数)
当x,w使用torch方法创建之后,该属性会保留grad属性,a、b、y都是通过x,w计算得到的,在反向传播之后就会释放梯度,减少内存开销。

在这里插入图片描述
在这里插入图片描述

代码实现

查看叶子结点

import torchw = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)a = torch.add(w, x)     # retain_grad()
b = torch.add(w, 1)
y = torch.mul(a, b)y.backward()
print(w.grad)# 查看叶子结点
print("is_leaf:\n", w.is_leaf, x.is_leaf, a.is_leaf, b.is_leaf, y.is_leaf)输出结果:
tensor([5.])
is_leaf:True True False False False

查看梯度

# -*- coding:utf-8 -*-import torchw = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)a = torch.add(w, x)     # retain_grad()
a.retain_grad()b = torch.add(w, 1)
b.retain_grad()
y = torch.mul(a, b)y.backward()
print(w.grad)
print("gradient:\n", w.grad, x.grad, a.grad, b.grad, y.grad)输出结果:
tensor([5.])
gradient:tensor([5.]) tensor([2.]) tensor([2.]) tensor([3.]) None

注意:a,b,y非叶子结点,所以反向传播之后会清除梯度,所以使用a.grad方法结果是none,需要在中间使用a.retain_grad()方法将a的梯度保留下来。

查看梯度计算方法

import torchw = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)a = torch.add(w, x)     # retain_grad()
# a.retain_grad()b = torch.add(w, 1)
# b.retain_grad()
y = torch.mul(a, b)y.backward()
print(w.grad)
# 查看 grad_fn
print("grad_fn:\n", w.grad_fn, x.grad_fn, a.grad_fn, b.grad_fn, y.grad_fn)输出结果:
tensor([5.])
grad_fn:None None <AddBackward0 object at 0x00000217F70B1330> <AddBackward0 object at 0x00000217F70B1300> <MulBackward0 object at 0x00000217F70B13F0>

从上面结果可以看出,a和b的梯度计算使用的是加法,y梯度使用的是乘法。

6.4 动态图

为什么近几年TensorFlow逐渐被淘汰了,因为TensorFlow使用的任然是静态图,先搭建网络后进行运算,这样会导致效率低下;
在这里插入图片描述

6.4.1pytorch动态图

在这里插入图片描述

6.4.2TensorFlow静态图

在这里插入图片描述

七、逻辑回归

7.1 torch.autograd自动求导系统

7.1.1 torch.autograd.backward

功能:自动求取梯度
在这里插入图片描述

• tensors: 用于求导的张量,如 loss
• retain_graph : 保存计算图
• create_graph : 创建导数计算图,用于高阶
求导
• grad_tensors:多梯度权重

7.1.2 torch.autograd.grad

功能:求取梯度
在这里插入图片描述

• outputs: 用于求导的张量,如 loss
• inputs : 需要梯度的张量
• create_graph : 创建导数计算图,用于高阶
求导
• retain_graph : 保存计算图
• grad_outputs:多梯度权重

7.1.3 自动求导系统注意事项

  1. 梯度不自动清零
  2. 依赖于叶子结点的结点,requires_grad默认为True
  3. 叶子结点不可执行in-place

7.2逻辑回归

逻辑回归是线性的二分类模型,模型表达式和函数图像如下:
在这里插入图片描述

线性回归是分析自变量x与因变量y(标量)之间关系的方法
逻辑回归是分析自变量x与因变量y(概率)之间关系的方法

7.2.1 线性回归与对数回归的区别

在这里插入图片描述

7.2.2 逻辑回归代码实现

在这里插入图片描述

# -*- coding: utf-8 -*-import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as nptorch.manual_seed(10)# ============================ step 1/5 生成数据 ============================
sample_nums = 100
mean_value = 1.7
bias = 1
n_data = torch.ones(sample_nums, 2)
x0 = torch.normal(mean_value * n_data, 1) + bias  # 类别0 数据 shape=(100, 2)
y0 = torch.zeros(sample_nums)  # 类别0 标签 shape=(100, 1)
x1 = torch.normal(-mean_value * n_data, 1) + bias  # 类别1 数据 shape=(100, 2)
y1 = torch.ones(sample_nums)  # 类别1 标签 shape=(100, 1)
train_x = torch.cat((x0, x1), 0)  # 在0维进行拼接
train_y = torch.cat((y0, y1), 0)# ============================ step 2/5 选择模型 ============================
class LR(nn.Module):def __init__(self):super(LR, self).__init__()self.features = nn.Linear(2, 1)self.sigmoid = nn.Sigmoid()def forward(self, x):x = self.features(x)x = self.sigmoid(x)return xlr_net = LR()  # 实例化逻辑回归模型# ============================ step 3/5 选择损失函数 ============================
loss_fn = nn.BCELoss()  # 二分类交叉熵损失函数# ============================ step 4/5 选择优化器   ============================
lr = 0.01  # 学习率
optimizer = torch.optim.SGD(lr_net.parameters(), lr=lr, momentum=0.9)# ============================ step 5/5 模型训练 ============================
for iteration in range(1000):# 前向传播y_pred = lr_net(train_x)# 计算 lossloss = loss_fn(y_pred.squeeze(), train_y)# 反向传播loss.backward()# 更新参数optimizer.step()# 清空梯度optimizer.zero_grad()# 绘图if iteration % 20 == 0:mask = y_pred.ge(0.5).float().squeeze()  # 以0.5为阈值进行分类correct = (mask == train_y).sum()  # 计算正确预测的样本个数acc = correct.item() / train_y.size(0)  # 计算分类准确率plt.scatter(x0.data.numpy()[:, 0], x0.data.numpy()[:, 1], c='r', label='class 0')plt.scatter(x1.data.numpy()[:, 0], x1.data.numpy()[:, 1], c='b', label='class 1')w0, w1 = lr_net.features.weight[0]w0, w1 = float(w0.item()), float(w1.item())plot_b = float(lr_net.features.bias[0].item())plot_x = np.arange(-6, 6, 0.1)plot_y = (-w0 * plot_x - plot_b) / w1plt.xlim(-5, 7)plt.ylim(-7, 7)plt.plot(plot_x, plot_y)plt.text(-5, 5, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})plt.title("Iteration: {}\nw0:{:.2f} w1:{:.2f} b: {:.2f} accuracy:{:.2%}".format(iteration, w0, w1, plot_b, acc))plt.legend()plt.show()plt.pause(0.5)if acc > 0.99:break

运行结果:380次迭代之后准确率达到99.5%
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/586861.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

开源可观测性平台Signoz(四)【链路监控及数据库中间件监控篇】

转载说明&#xff1a;如果您喜欢这篇文章并打算转载它&#xff0c;请私信作者取得授权。感谢您喜爱本文&#xff0c;请文明转载&#xff0c;谢谢。 前文链接&#xff1a; ​​开源可观测性平台Signoz系列&#xff08;一&#xff09;【开篇】​​ ​​开源可观测性平台Signoz&…

CSS之元素转换

我想大家在写代码时有一个疑问&#xff0c;块级元素可以转换成其他元素吗&#xff1f; 让我为大家介绍一下元素转换 1.display:block(转换成块元素) display&#xff1a;block可以把我们的行内元素或者行内块元素转换成块元素 接下来让我为大家演示一下&#xff1a; <!DO…

tcpdump出现permission denied

在使用tcpdump -i eth0 src host 192.168.0.184 and ip and port 22 -nn -w ping.pacp命令抓包并把抓到的数据保存到ping.pacp时&#xff0c;出现了权限错误的报错。但实际上我这里用的是root用户执行的命令。 查阅man手册发现: 在tcpdump中&#xff0c;-Z选项用于在启动数据…

CSS 动态提示框

​​ <template> <div class"terminal-loader"><div class"terminal-header"><div class"terminal-title">提示框</div><div class"terminal-controls"><div class"control close"…

【Matlab】BP 神经网络时序预测算法

资源下载&#xff1a; https://download.csdn.net/download/vvoennvv/88681507 一&#xff0c;概述 BP 神经网络是一种常见的人工神经网络&#xff0c;也是一种有监督学习的神经网络。其全称为“Back Propagation”&#xff0c;即反向传播算法。BP 神经网络主要由输入层、隐藏层…

SpringValidation自定义注解以及分组校验

SpringValidation的参数校验使用可参考&#xff1a;【SpringMVC应用篇】Spring Validation 参数校验-CSDN博客 目录 1. 引入依赖 2. 自定义注解校验 2.1 创建Validation类 2.2 创建注解对象 2.3 使用注解 3. 分组校验 3.1 实体类内部定义接口 3.2 在参数上指定分组 1. …

git回滚操作,常用场景

文章目录 git回滚操作1.git reset --hard 【版本号】2.回滚后的版本v2又想回到之前的版本v32.1 git reflog 3.git checkout -- 文件名4.git reset HEAD 文件名 git回滚操作 假设我们现在有三个版本 现在回滚一个版本 1.git reset --hard 【版本号】 发现只剩下两个版本了 2.…

51单片机的中断相关知识

51单片机的中断相关知识点 一、中断概念和功能 概念 程序执行过程中CPU会遇到一些特殊情况&#xff0c;是正在执行的程序被“中断”&#xff0c;cpu中止原来正在执行的程序&#xff0c;转到处理异常情况或特殊事件的程序去执行&#xff0c;结束后再返回到原被中止的程序处(断…

计算机网络——计算大题(七)

前言&#xff1a; 最近也是在准备计算机考试&#xff0c;我们的考试形式是上机考试&#xff0c;所以可能有些计算题是会给提供思路的&#xff0c;前面已经对本学期的计算机网络知识有了一个简单的认识与了解&#xff0c;现在我们就来对计算大题进行一个学习吧&#xff0c;这里的…

中医电子处方系统,西医个体诊所门诊卫生室病历记录查询软件教程

中医电子处方系统&#xff0c;西医个体诊所门诊卫生室病历记录查询软件教程 一、软件程序问答 1、电子处方软件如何快速开单&#xff1f; 如下图&#xff0c;软件以 佳易王诊所电子处方管理系统V17.1版本为例说明 在开电子处方的时候可以按单个药品开&#xff0c;也可以直…

【开源】基于Vue+SpringBoot的二手车交易系统

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 二手车档案管理模块2.3 车辆预约管理模块2.4 车辆预定管理模块2.5 车辆留言板管理模块2.6 车辆资讯管理模块 三、系统设计3.1 E-R图设计3.2 可行性分析3.2.1 技术可行性分析3.2.2 操作可行性3.2.3 经济…

结构体:子网掩码

#include<iostream> using namespace std; union IP //创建共用体 {unsigned char a[4];unsigned int ip; }; IP getIP() //获取ip函数 {int a, b, c, d;scanf_s("%d.%d.%d.%d", &a, &b, &c, &d);IP address;address.a[3] a; address.a[2] …

阿里后端实习二面

阿里后端实习二面 记录面试题目&#xff0c;希望可以帮助到大家 类加载的流程&#xff1f; 类加载分为三个部分&#xff1a;加载、连接、初始化 加载 类的加载主要的职责为将.class文件的二进制字节流读入内存(JDK1.7及之前为JVM内存&#xff0c;JDK1.8及之后为本地内存)&…

计算机网络【EPOLL 源码详解】

IO多路复用 在以前&#xff0c;传统的网络编程是多线程模型&#xff0c;一个线程单独处理一个请求。 然而&#xff0c;线程是很昂贵的资源&#xff1a; 线程的创建和销毁成本很高&#xff0c;linux的线程实际上是特殊的进程&#xff1b;因此通常会使用线程池来减少线程创建和…

迷宫问题的对比实验研究(代码注释详细、迷宫及路径可视化)

题目描述 对不同的迷宫进行算法问题&#xff0c;广度优先、深度优先、以及人工智能上介绍的一些算法&#xff1a;例如A*算法&#xff0c;蚁群算法等。 基本要求&#xff1a; &#xff08;1&#xff09;从文件读入9*9的迷宫&#xff0c;设置入口和出口&#xff0c;分别采用以上方…

2023年终总结

前言&#xff1a; 嘻嘻&#xff0c;12月底广州降温了又到了写年终总结的时间&#xff0c;这也是我第二年写年终总结。今年的年终总结主要记录了我大三下学期和大四上学期这两个时间段的学习和收获&#xff0c;也是我尝试走出校园&#xff0c;接触社会的第一年&#xff08;感触…

SpringAMQP的使用方式

MQ介绍 MQ&#xff0c;中文是消息队列&#xff08;MessageQueue&#xff09;&#xff0c;字面来看就是存放消息的队列。也就是事件驱动架构中的Broker。 比较常见的MQ实现&#xff1a; ActiveMQ RabbitMQ RocketMQ Kafka 几种常见MQ的对比&#xff1a; RabbitMQActiveM…

unity随笔- 2D动画制作animation

1.前提&#xff1a;将连续的动作图片制为图集。 2.在Hierarchy中选中含图集的sprites对象。 3.打开animator组件&#xff0c;点击create创建动画组件 4.添加property选择sprite 5.选择图集需要的部分加入animation。&#xff08;animation使用见animator&#xff09;

OSG绘制视锥体(升级版)

OSG绘制视锥体&#xff0c;这一篇增加设置相机参数接口&#xff0c;支持通过eye、center、up设置相机参数。 代码如下&#xff1a; #include "stdafx.h" #include <osgViewer/Viewer> #include <osg/ShapeDrawable> #include <osg/Geode> #includ…

产品经理学习-怎么写PRD文档

目录 瀑布流方法论介绍 产品需求文档&#xff08;PRD&#xff09;介绍 产品需求文档的基本要素 撰写产品需求文档 优先产品需求文档的特点 其他相关文档 瀑布流方法论介绍 瀑布流模型是一种项目的开发和管理的方法论&#xff0c;是敏捷的开发管理方式相对应的另一种方法…