大创项目推荐 深度学习交通车辆流量分析 - 目标检测与跟踪 - python opencv

文章目录

  • 0 前言
  • 1 课题背景
  • 2 实现效果
  • 3 DeepSORT车辆跟踪
    • 3.1 Deep SORT多目标跟踪算法
    • 3.2 算法流程
  • 4 YOLOV5算法
    • 4.1 网络架构图
    • 4.2 输入端
    • 4.3 基准网络
    • 4.4 Neck网络
    • 4.5 Head输出层
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习得交通车辆流量分析 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 课题背景

在智能交通系统中,利用监控视频进行车流量统计是一个研究热点。交管部门通过实时、准确地采集车流量信息,可以合理分配交通资源、提高道路通行效率,有效预防和应对城市交通拥堵问题。同时随着车辆数量的增加,交通违章现象频出,例如渣土车违规上道、工程车辆违规进入城市主干道、车辆停放在消防通道等,这一系列的交通违规行为给城市安全埋下了巨大隐患。对于交通管理者而言,加强对特定车辆的识别和分类管理尤为重要。然而,在实际监控识别车辆时,相当一部分车辆图像存在图像不全或者遮挡问题,极大降低了监控识别准确率。如何准确识别车辆,是当前车辆检测的重点。

根据实际情况,本文将车辆分为家用小轿车、货车两类进行车辆追踪和速度识别。

2 实现效果

可识别图片视频中的轿车和货车数量,检测行驶速度并实时显示。

在这里插入图片描述

关键代码

# 目标检测def yolo_detect(self, im):img = self.preprocess(im)pred = self.m(img, augment=False)[0]pred = pred.float()pred = non_max_suppression(pred, self.conf_thres, self.iou_thres )pred_boxes = []for det in pred:if det is not None and len(det):det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im.shape).round()for *x, conf, cls_id in det:lbl = self.names[int(cls_id)]x1, y1 = int(x[0]), int(x[1])x2, y2 = int(x[2]), int(x[3])pred_boxes.append((x1, y1, x2, y2, lbl, conf))return pred_boxes

3 DeepSORT车辆跟踪

多目标在线跟踪算法 SORT(simple online andrealtime
tracking)利用卡尔曼滤波和匈牙利匹配,将跟踪结果和检测结果之间的IoU作为代价矩阵,实现了一种简单高效并且实用的跟踪范式。但是 SORT
算法的缺陷在于所使用的关联度量(association
metric)只有在状态估计不确定性较低的情况下有效,因此算法执行时会出现大量身份切换现象,当目标被遮挡时跟踪失败。为了改善这个问题,Deep SORT
将目标的运动信息和外观信息相结合作为关联度量,改善目标消失后重新出现导致的跟踪失败问题。

3.1 Deep SORT多目标跟踪算法

跟踪处理和状态估计

Deep SORT
利用检测器的结果初始化跟踪器,每个跟踪器都会设置一个计数器,在卡尔曼滤波之后计数器累加,当预测结果和检测结果成功匹配时,该计数器置为0。在一段时间内跟踪器没有匹配到合适的检测结果,则删除该跟踪器。Deep
SORT 为每一帧中新出现的检测结果分配跟踪器,当该跟踪器连续3帧的预测结果都能匹配检测结果,则确认是出现了新的轨迹,否则删除该跟踪器。

Deep SORT使用 8维状态空间在这里插入图片描述描述目标的状态和在图像坐标系中的运动信息。在这里插入图片描述表示目标检测框的中心坐标在这里插入图片描述分别表示检测框的宽高比例和高度,在这里插入图片描述表示前面四个参数在图像坐标中的相对速度。算法使用具有恒定速度模型和线性观测模型的标准卡尔曼滤波器,将检测框参数在这里插入图片描述作为对象状态的直接观测值。

分配问题

Deep SORT
结合运动信息和外观信息,使用匈牙利算法匹配预测框和跟踪框。对于运动信息,算法使用马氏距离描述卡尔曼滤波预测结果和检测器结果的关联程度,如公式中:

在这里插入图片描述

在这里插入图片描述分别表示第 j 个检测结果和第 i
个预测结果的状态向量,Si 表示检测结果和平均跟踪结

当目标运动信息不确定性较低的时候,马氏距离是一种合适的关联因子,但是当目标遮挡或者镜头视角抖动时,仅使用马氏距离关联会导致目标身份切换。因此考虑加入外观信息,对每一个检测框
dj 计算出对应的外观特征描述符 rj ,并且设置在这里插入图片描述。对于每一个跟踪轨迹 k
设置特征仓库在这里插入图片描述,用来保存最近100条目标成功关联的特征描述符,在这里插入图片描述。计算第 i 个跟踪框和第 j
个检测框最小余弦距离,如公式:

在这里插入图片描述

在这里插入图片描述小于指定的阈值,认为关联成功。

马氏距离在短时预测情况下可以提供可靠的目标位置信息,使用外观特征的余弦相似度可以在目标遮挡又重新出现时恢复目标
ID,为了使两种度量的优势互补,使用线性加权的方式进行结合:

在这里插入图片描述

3.2 算法流程

Deepsort算法的工作流程如下图所示:

在这里插入图片描述

源码流程

主函数部分整体逻辑是比较简单的,首先是将命令行参数进行解析,解析的内容包括,MOTChanlleng序列文件所在路径、需要检测文件所在的目录等一系列参数。解析之后传递给run方法,开始运行。

在这里插入图片描述

进入run函数之后,首先会收集流信息,包括图片名称,检测结果以及置信度等,后续会将这些流信息传入到检测框生成函数中,生成检测框列表。然后会初始化metric对象,metric对象简单来说就是度量方式,在这个地方我们可以选择两种相似度的度量方式,第一种叫做余弦相似度度量,另一种叫做欧拉相似度度量。通过metric对象我们来初始化追踪器。
在这里插入图片描述

接着根据display参数开始生成对应的visuializer,如果选择将检测结果进行可视化展示,那么便会生成Visualization对象,我从这个类中可以看到,它主要是调用opencv
image
viewer来讲追踪的结果进行展示。如果display是false则会生成一个NoVisualization对象,它一个虚拟可视化对象,它以给定的顺序循环遍历所有帧以更新跟踪器,而无需执行任何可视化。两者主要区别其实就是是否调用opencv将图片展示出来。其实前边我们所做的一系列工作可以说都是准备的工作,实际上核心部分就是在执行这个run方法之后。此处我们可以看到,在run方法中传入了一个frame_callback函数,这个frame_callback函数可以说是整个算法的核心部分,每一帧的图片都会执行该函数。
在这里插入图片描述

4 YOLOV5算法

6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region
proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种
one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO
一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:

在这里插入图片描述

4.1 网络架构图

在这里插入图片描述

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

4.2 输入端

在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

  • Mosaic数据增强:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错

在这里插入图片描述

4.3 基准网络

融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

4.4 Neck网络

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

在这里插入图片描述

在这里插入图片描述

FPN+PAN的结构

在这里插入图片描述

这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-
Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

4.5 Head输出层

输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:


①==>40×40×255

②==>20×20×255③==>10×10×255

在这里插入图片描述

相关代码

class Detect(nn.Module):stride = None  # strides computed during buildonnx_dynamic = False  # ONNX export parameterdef __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layersuper().__init__()self.nc = nc  # number of classesself.no = nc + 5  # number of outputs per anchorself.nl = len(anchors)  # number of detection layersself.na = len(anchors[0]) // 2  # number of anchorsself.grid = [torch.zeros(1)] * self.nl  # init gridself.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor gridself.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output convself.inplace = inplace  # use in-place ops (e.g. slice assignment)def forward(self, x):z = []  # inference outputfor i in range(self.nl):x[i] = self.m[i](x[i])  # convbs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training:  # inferenceif self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xyy[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # whelse:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xywh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # why = torch.cat((xy, wh, y[..., 4:]), -1)z.append(y.view(bs, -1, self.no))return x if self.training else (torch.cat(z, 1), x)def _make_grid(self, nx=20, ny=20, i=0):d = self.anchors[i].deviceif check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibilityyv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')else:yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()anchor_grid = (self.anchors[i].clone() * self.stride[i]) \.view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()return grid, anchor_grid

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/586785.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

模式识别与机器学习-集成学习

集成学习 集成学习思想过拟合与欠拟合判断方法 K折交叉验证BootstrapBagging随机森林的特点和工作原理: BoostingAdaBoost工作原理:AdaBoost的特点和优点:AdaBoost的缺点: Gradient Boosting工作原理:Gradient Boostin…

android 13.0 Launcher3长按app弹窗设置为圆角背景功能实现一

1.前言 在13.0的系统ROM定制化开发中,在进行一些Launcher3的定制化开发中,在使用app的弹窗的功能时,会弹出应用信息和微件之类的内容,所以在定制需求中,需要默认设置为圆角背景,接下来就来分析下相关功能的实现 如图: 2.Launcher3长按app弹窗设置为圆角背景功能实现的核…

【MYSQL】-函数

💖作者:小树苗渴望变成参天大树🎈 🎉作者宣言:认真写好每一篇博客💤 🎊作者gitee:gitee✨ 💞作者专栏:C语言,数据结构初阶,Linux,C 动态规划算法🎄 如 果 你 …

AcWing 1076. 迷宫问题(最短路模型)

题目链接 活动 - AcWing本课程系统讲解常用算法与数据结构的应用方式与技巧。https://www.acwing.com/problem/content/description/1078/ 来源 《信息学奥赛一本通》, kuangbin专题 , POJ3984 代码 #include <cstring> #include <iostream> #include <alg…

【网络安全常用术语解读】SCAP详解

本文主要介绍什么是SCAP&#xff0c;SCAP的产生背景是怎样的&#xff0c;SCAP有什么用途&#xff0c;有哪些组件&#xff0c;各个组件的用途是什么&#xff1f; SCAP产生背景 由于计算机和网络技术的快速发展&#xff0c;越来越多的软件和系统被应用到企业和机构中&#xff0c…

迭代归并:归并排序非递归实现解析

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《数据结构&算法》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! &#x1f4cb; 前言 归并排序的思想上我们已经全部介绍完了&#xff0c;但是同时也面临和快速排序一样的问题那就是递…

通信原理课设(gec6818) 007:语音识别

目录 1、去科大讯飞官网下载对应的sdk 2、科大讯飞文件夹的意思 3、配置ARM的录音环境 4、编程实现语音识别 我们的需求是将一个语音文件从客户端传到服务器&#xff0c;因此我们最好是选用tcp 现在市面上面常用的语音识别解决方案为&#xff1a;科大讯飞c和百度c 离…

龙芯3A5000上安装使用QQ

原文链接&#xff1a;龙芯3A5000上安装使用QQ hello&#xff0c;大家好啊&#xff01;今天我要给大家带来的是在龙芯3A5000处理器上安装使用QQ的文章。近期&#xff0c;腾讯发布了最新版本的QQ&#xff0c;值得一提的是&#xff0c;这一版本增加了对Linux系统下龙芯架构的支持。…

KG+LLM(一)KnowGPT: Black-Box Knowledge Injection for Large Language Models

论文链接&#xff1a;2023.12-https://arxiv.org/pdf/2312.06185.pdf 1.Background & Motivation 目前生成式的语言模型&#xff0c;如ChatGPT等在通用领域获得了巨大的成功&#xff0c;但在专业领域&#xff0c;由于缺乏相关事实性知识&#xff0c;LLM往往会产生不准确的…

项目记录:利用Redis实现缓存以提升查询效率

一、概述 当我们查询所有数据时&#xff0c;如果缓存中没有&#xff0c;则去数据库查询&#xff0c;如果有&#xff0c;直接查缓存的数据就行。注意定期更新缓存数据。 二、主体代码 private static final String ROOM_SCHEDULES_HASH "RoomSchedules";Overridepu…

HTML---JavaScript基础

文章目录 目录 文章目录 本章目标 一.JavaScript基础 概述 特点 JavaScript 基本机构 语法 网页中引用JavaScript的方式 二. JavaScript核心语法 变量 ​编辑 数据类型 数组 练习 本章目标 掌握JavaScript的组成掌握JavaScript的基本语法会定义和使用函数会使用工具进行…

引领手游技术潮流:武汉灰京文化的卓越技术创新与市场推广支持

在数字娱乐领域&#xff0c;手游行业正蓬勃发展&#xff0c;为数以亿计的玩家提供了丰富的娱乐选择。武汉灰京文化&#xff0c;作为该领域的佼佼者&#xff0c;以其强大的技术创新和全面的市场推广支持&#xff0c;为合作伙伴的成功铺平了道路&#xff0c;不仅提升了游戏质量&a…

TV端Web页面性能优化实践

01 背景 随着互联网技术的持续创新和电视行业的高速发展&#xff0c;通过电视观看在线视频已经逐渐成为大众的重要娱乐方式。奇异果App作为在TV设备上用户活跃度最高的应用之一&#xff0c;为广大用户提供了丰富的内容播放服务&#xff0c;除此之外&#xff0c;同样有会员运营、…

【Kubernetes】什么是 kubectl ?

什么是 kubectl &#xff1f; 1.什么是 kubectl &#xff1f;2.Kubernetes 内部结构3.Kubernetes API 的作用 1.什么是 kubectl &#xff1f; 在学习如何更有效地使用 kubectl 之前&#xff0c;您应该对它是什么以及它如何工作有一个基本的了解。从用户的角度来看&#xff0c;…

Javaweb-servlet

一、servlet入门 1.Servlet介绍 (1)什么是Servlet Servlet是Server Applet的简称&#xff0c;是用Java编写的是运行在 Web 服务器上的程序&#xff0c;它是作为来自 Web 浏览器或其他 HTTP 客户端的请求和 HTTP 服务器上的数据库或应用程序之间的中间层。使用 Servlet&#…

CGAL的三角网格曲面脊线和脐点的近似计算(需要微分几何学的知识)

脊线&#xff08;Ridges&#xff09;&#xff1a;在光滑曲面上&#xff0c;脊线是一种特殊的曲线。沿着这条曲线&#xff0c;曲面的一个主曲率在其曲率线上达到极值&#xff08;最大或最小&#xff09;。这意味着脊线是那些曲率发生突变的区域&#xff0c;它们在形状感知、物体…

Android Studio下载gradle失败

1、打开Android Studio设置Gradle的地方&#xff0c;点击左上角的File->Settings查看gradle存放路径 C:\Users\Administrator.gradle\wrapper\dists\gradle-5.4.1-all\3221gyojl5jsh0helicew7rwx 2、找到正在下载的gradle版本&#xff0c;Android Studio取消下载gradle&…

Tomcat与Servlet是什么关系

Tomcat与Servlet是什么关系 Apache Tomcat和Servlet之间存在密切的关系&#xff0c;可以说它们是一对密切合作的组件。下面是它们的关系&#xff1a; Tomcat是Servlet容器&#xff1a; Tomcat是一个开源的、轻量级的Servlet容器。Servlet容器是一个Web服务器扩展&#xff0c;用…

2023.12.28 关于 Redis 数据类型 List 内部编码、应用场景

目录 List 编码方式 早期版本 现今版本 List 实际应用 多表之间的关联关系 消息队列 频道&#xff08;多列表&#xff09;消息队列 微博 Timeline 栈 & 队列 List 编码方式 早期版本 早期版本 List 类型的内部编码方式有两种 ziplist&#xff08;压缩列表&#xf…

Cisco模拟器-企业网络部署

某企业园区网有&#xff1a;2个分厂&#xff08;分别是&#xff1a;零件分厂、总装分厂&#xff09;1个总厂网络中心 1个总厂会议室&#xff1b; &#xff08;1&#xff09;每个分厂有自己的路由器&#xff0c;均各有&#xff1a;1个楼宇分厂网络中心 每个楼宇均包含&#x…