【机器学习】深度学习概论(二)

五、受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)

cd92844354fd82de0dda2e407a255bb3.jpeg

5.1 RBM介绍

ac3c3d62a55ab04d25874f23db8fd57b.jpeg

示例代码:

Python 编写了一个简单的 RBM 实现,并用一些假数据训练了它。然后,他展示了如何用 RBM 来解释用户的电影偏好,以及如何用 RBM 来生成电影推荐:

使用一些假数据训练了RBM。

  • 爱丽丝:(哈利波特 = 1,阿凡达 = 1,LOTR 3 = 1,角斗士 = 0,泰坦尼克号 = 0,闪光 = 0)。SF/奇幻大粉丝。

  • 鲍勃:(哈利波特 = 1,阿凡达 = 0,LOTR 3 = 1,角斗士 = 0,泰坦尼克号 = 0,闪光 = 0)。SF/奇幻迷,但不喜欢《阿凡达》。

  • 卡罗尔:(哈利波特 = 1,阿凡达 = 1,LOTR 3 = 1,角斗士 = 0,泰坦尼克号 = 0,闪光 = 0)。SF/奇幻大粉丝。

  • 大卫:(哈利波特 = 0,阿凡达 = 0,LOTR 3 = 1,角斗士 = 1,泰坦尼克号 = 1,闪光 = 0)。奥斯卡大奖得主的粉丝。

  • 埃里克:(哈利波特 = 0,阿凡达 = 0,LOTR 3 = 1,角斗士 = 1,泰坦尼克号 = 1,闪光 = 0)。奥斯卡奖得主的粉丝,泰坦尼克号除外。

  • 弗雷德:(哈利波特 = 0,阿凡达 = 0,LOTR 3 = 1,角斗士 = 1,泰坦尼克号 = 1,闪光 = 0)。奥斯卡大奖得主的粉丝。

该网络学习了以下权重:

548d3601f2c5346b051d114ea1b184f3.png

请注意,第一个隐藏单元似乎对应于奥斯卡奖得主,第二个隐藏单元似乎对应于 SF/奇幻电影,正如我们所希望的那样。

如果我们给 RBM 一个新用户 George,他将 (Harry Potter = 0, Avatar = 0, LOTR 3 = 0, Gladiator = 1, Titanic = 1, Glitter = 0) 作为他的偏好,会发生什么?它打开了奥斯卡奖得主单元(但不是 SF/奇幻单元),正确地猜测乔治可能喜欢奥斯卡奖得主的电影。

如果我们只激活 SF/幻想单元,并运行一系列不同的 RBM,会发生什么?在我的试验中,它打开了哈利波特、阿凡达和 LOTR 3 三次;它打开了《阿凡达》和《LOTR 3》,但没有打开《哈利波特》一次;它打开了哈利波特和 LOTR 3,但没有打开阿凡达,两次。请注意,根据我们的训练示例,这些生成的偏好确实符合我们期望真正的 SF/奇幻粉丝想要观看的内容。

# 导入未来模块,用于兼容不同版本的Python
from __future__ import print_function
# 导入numpy库,用于科学计算
import numpy as np# 定义一个类,表示受限玻尔兹曼机
class RBM:# 定义初始化方法,接受可见层单元数和隐藏层单元数作为参数def __init__(self, num_visible, num_hidden):# 将隐藏层单元数和可见层单元数赋值给类的属性self.num_hidden = num_hiddenself.num_visible = num_visible# 设置一个调试打印的标志,用于控制是否打印训练信息self.debug_print = True# 创建一个随机数生成器,指定随机种子为1234np_rng = np.random.RandomState(1234)# 创建一个权重矩阵,用于存储可见层和隐藏层之间的连接权重# 权重矩阵的形状为(num_visible, num_hidden),即每一列对应一个隐藏单元,每一行对应一个可见单元# 权重矩阵的初始值为均匀分布在[-0.1 * np.sqrt(6. / (num_hidden + num_visible)),# 0.1 * np.sqrt(6. / (num_hidden + num_visible))]之间的随机数,这个范围是根据论文中的建议选择的self.weights = np.asarray(np_rng.uniform(low=-0.1 * np.sqrt(6. / (num_hidden + num_visible)),high=0.1 * np.sqrt(6. / (num_hidden + num_visible)),size=(num_visible, num_hidden)))# 在权重矩阵的第一行和第一列插入零,用于表示偏置单元的权重# 偏置单元是一种特殊的单元,它的值始终为1,用于增加模型的灵活性# 第一行的权重表示隐藏层的偏置,第一列的权重表示可见层的偏置self.weights = np.insert(self.weights, 0, 0, axis = 0)self.weights = np.insert(self.weights, 0, 0, axis = 1)# 定义一个训练方法,接受数据,最大训练轮数,学习率等参数def train(self, data, max_epochs = 1000, learning_rate = 0.1):# 获取数据的样本数,即第一个维度的大小num_examples = data.shape[0]# 在数据的第一列插入1,用于表示偏置单元的值data = np.insert(data, 0, 1, axis = 1)# 遍历训练轮数for epoch in range(max_epochs):      # 将数据作为可见层的状态,计算隐藏层的激活值# 这是正向传播的过程,也称为正相对比散度阶段,或者现实阶段# 激活值等于数据与权重矩阵的点积,形状为(num_examples, num_hidden + 1)pos_hidden_activations = np.dot(data, self.weights)      # 计算隐藏层的激活概率,即隐藏层的单元以一定的概率被激活(取值为1)# 激活概率是通过逻辑斯蒂函数(或称为Sigmoid函数)计算的,它可以将任意值映射到(0,1)之间# 形状仍为(num_examples, num_hidden + 1)pos_hidden_probs = self._logistic(pos_hidden_activations)# 将第一列的激活概率设为1,用于表示偏置单元的值pos_hidden_probs[:,0] = 1 # Fix the bias unit.# 根据隐藏层的激活概率,生成隐藏层的状态# 隐藏层的状态是一个二值的矩阵,形状为(num_examples, num_hidden + 1)# 隐藏层的状态等于激活概率是否大于一个随机数,如果大于则为1,否则为0pos_hidden_states = pos_hidden_probs > np.random.rand(num_examples, self.num_hidden + 1)# 注意,我们在计算关联矩阵时,使用的是隐藏层的激活概率,而不是隐藏层的状态# 我们也可以使用状态,具体可以参考Hinton的论文《A Practical Guide to Training Restricted Boltzmann Machines》的第三节# 关联矩阵是可见层和隐藏层的状态的外积,形状为(num_visible + 1, num_hidden + 1)pos_associations = np.dot(data.T, pos_hidden_probs)# 从隐藏层的状态重构可见层的激活值# 这是反向传播的过程,也称为负相对比散度阶段,或者梦境阶段# 激活值等于隐藏层的状态与权重矩阵的转置的点积,形状为(num_examples, num_visible + 1)neg_visible_activations = np.dot(pos_hidden_states, self.weights.T)# 计算可见层的激活概率,即可见层的单元以一定的概率被激活(取值为1)# 激活概率是通过逻辑斯蒂函数(或称为Sigmoid函数)计算的,它可以将任意值映射到(0,1)之间# 形状仍为(num_examples, num_visible + 1)neg_visible_probs = self._logistic(neg_visible_activations)# 将第一列的激活概率设为1,用于表示偏置单元的值neg_visible_probs[:,0] = 1 # Fix the bias unit.# 从可见层的激活概率计算隐藏层的激活值# 激活值等于可见层的激活概率与权重矩阵的点积,形状为(num_examples, num_hidden + 1)neg_hidden_activations = np.dot(neg_visible_probs, self.weights)# 计算隐藏层的激活概率,即隐藏层的单元以一定的概率被激活(取值为1)# 激活概率是通过逻辑斯蒂函数(或称为Sigmoid函数)计算的,它可以将任意值映射到(0,1)之间# 形状仍为(num_examples, num_hidden + 1)neg_hidden_probs = self._logistic(neg_hidden_activations)# 注意,我们在计算关联矩阵时,使用的是可见层和隐藏层的激活概率,而不是状态# 关联矩阵是可见层和隐藏层的激活概率的外积,形状为(num_visible + 1, num_hidden + 1)neg_associations = np.dot(neg_visible_probs.T, neg_hidden_probs)# 更新权重矩阵# 权重矩阵的更新量等于学习率乘以正相关联矩阵减去负相关联矩阵,再除以样本数# 这样可以使得正相的概率增大,负相的概率减小,从而最大化数据的似然度# 更新权重矩阵,使用学习率、正相联和负相联的差值除以样本数作为增量self.weights += learning_rate * ((pos_associations - neg_associations) / num_examples)# 计算误差,使用数据和负可见概率的差的平方和error = np.sum((data - neg_visible_probs) ** 2)# 如果开启了调试打印,打印出每个迭代的误差if self.debug_print:print("Epoch %s: error is %s" % (epoch, error))# 定义一个方法,用于从可见层运行网络,得到隐藏层的状态def run_visible(self, data):# 获取样本数num_examples = data.shape[0]# 创建一个矩阵,每一行是一个训练样本对应的隐藏单元(加上一个偏置单元)hidden_states = np.ones((num_examples, self.num_hidden + 1))# 在数据的第一列插入偏置单元,值为1data = np.insert(data, 0, 1, axis = 1)# 计算隐藏单元的激活值hidden_activations = np.dot(data, self.weights)# 计算隐藏单元被激活的概率hidden_probs = self._logistic(hidden_activations)# 根据概率随机激活隐藏单元hidden_states[:,:] = hidden_probs > np.random.rand(num_examples, self.num_hidden + 1)# 始终将偏置单元设置为1# hidden_states[:,0] = 1# 忽略偏置单元hidden_states = hidden_states[:,1:]return hidden_states# 定义一个方法,用于从隐藏层运行网络,得到可见层的状态# TODO: 去除这个方法和`run_visible`之间的代码重复?def run_hidden(self, data):# 获取样本数num_examples = data.shape[0]# 创建一个矩阵,每一行是一个训练样本对应的可见单元(加上一个偏置单元)visible_states = np.ones((num_examples, self.num_visible + 1))# 在数据的第一列插入偏置单元,值为1data = np.insert(data, 0, 1, axis = 1)# 计算可见单元的激活值visible_activations = np.dot(data, self.weights.T)# 计算可见单元被激活的概率visible_probs = self._logistic(visible_activations)# 根据概率随机激活可见单元visible_states[:,:] = visible_probs > np.random.rand(num_examples, self.num_visible + 1)# 始终将偏置单元设置为1# visible_states[:,0] = 1# 忽略偏置单元visible_states = visible_states[:,1:]return visible_states# 定义一个方法,用于生成梦境样本,即从网络中随机抽取可见层的状态def daydream(self, num_samples):# 创建一个矩阵,每一行是一个可见单元(加上一个偏置单元)的样本samples = np.ones((num_samples, self.num_visible + 1))# 从均匀分布中取第一个样本samples[0,1:] = np.random.rand(self.num_visible)# 开始交替的吉布斯采样# 注意,我们保持隐藏单元的二进制状态,但是将可见单元作为实数概率# 参见 Hinton 的 "A Practical Guide to Training Restricted Boltzmann Machines" 的第三节# 了解更多原因for i in range(1, num_samples):visible = samples[i-1,:]# 计算隐藏单元的激活值hidden_activations = np.dot(visible, self.weights)      # 计算隐藏单元被激活的概率hidden_probs = self._logistic(hidden_activations)# 根据概率随机激活隐藏单元hidden_states = hidden_probs > np.random.rand(self.num_hidden + 1)# 始终将偏置单元设置为1hidden_states[0] = 1# 重新计算可见单元被激活的概率visible_activations = np.dot(hidden_states, self.weights.T)visible_probs = self._logistic(visible_activations)visible_states = visible_probs > np.random.rand(self.num_visible + 1)samples[i,:] = visible_states# 忽略偏置单元(第一列),因为它们总是被设置为1return samples[:,1:]                                         # 判断是否是主模块,如果是,则执行以下代码
if __name__ == '__main__':# 创建一个受限玻尔兹曼机的实例,指定可见层单元数为6,隐藏层单元数为2r = RBM(num_visible = 6, num_hidden = 2)# 创建一个训练数据的数组,每一行是一个样本,每一列是一个特征# 这里的数据是一个二值的矩阵,表示6个特征的存在或缺失training_data = np.array([[1,1,1,0,0,0],[1,0,1,0,0,0],[1,1,1,0,0,0],[0,0,1,1,1,0], [0,0,1,1,0,0],[0,0,1,1,1,0]])# 调用训练方法,指定最大训练轮数为5000r.train(training_data, max_epochs = 5000)# 打印出训练后的权重矩阵print(r.weights)# 创建一个用户数据的数组,表示一个新的样本user = np.array([[0,0,0,1,1,0]])# 打印出从可见层运行网络得到的隐藏层的状态print(r.run_visible(user))

输出结果:

a02cf3b28e5c85960fe24bd6de98a550.png

5.2 深度玻尔兹曼机

深度玻尔兹曼机(Deep Boltzmann Machine,DBM)是一种基于能量的生成模型,它可以用来学习复杂数据的概率分布。DBM由多层隐变量组成,每层隐变量之间没有连接,但是每层隐变量都与下一层可见变量或上一层隐变量相连。DBM的最底层是可见层,它表示观测到的数据,例如图像、文本或音频。DBM的目标是最大化数据的对数似然,即让模型生成的数据尽可能接近真实数据。DBM的训练过程涉及到两个阶段:预训练和微调。预训练是使用贪婪逐层算法,将每两层隐变量视为一个受限玻尔兹曼机(Restricted Boltzmann Machine,RBM),并用对比散度(Contrastive Divergence,CD)算法进行无监督学习。微调是使用随机最大似然(Stochastic Maximum Likelihood,SML)算法,对整个模型进行联合优化,以提高模型的泛化能力。

DBM具有以下几个优点:

  • DBM可以从高维、非线性、非高斯的数据中学习出抽象的特征表示,从而实现数据的降维和特征提取。

  • DBM可以用于生成新的数据样本,例如生成新的图像或文本,从而实现数据的增强和创造。

  • DBM可以用于多种任务,例如分类、回归、聚类、协同过滤、推荐系统等,只需在模型的顶层添加一个适当的输出层即可。

DBM也有以下几个缺点:

  • DBM的训练过程比较复杂和耗时,需要大量的计算资源和数据量。

  • DBM的训练过程涉及到很多超参数的选择,例如学习率、批量大小、采样步数、正则化项等,这些超参数对模型的性能有很大的影响,但是很难确定最优的值。

  • DBM的理论分析比较困难,很多性质和定理还没有得到严格的证明,例如模型的收敛性、稳定性、可解释性等

5.3 深度置信网

深度置信网(Deep Belief Network,DBN)是一种基于图模型的生成模型,它由多层受限玻尔兹曼机(RBM)堆叠而成。DBN的最底层是可见层,它表示观测到的数据,例如图像、文本或音频。DBN的最顶层是一个无向图,它表示数据的高层抽象特征。DBN的中间层是有向图,它表示数据的中间层特征。DBN的目标是最大化数据的对数似然,即让模型生成的数据尽可能接近真实数据。DBN的训练过程涉及到两个阶段:预训练和微调。预训练是使用贪婪逐层算法,将每两层视为一个RBM,并用CD算法进行无监督学习。微调是使用反向传播(Backpropagation,BP)算法,对整个模型进行有监督学习,以提高模型的泛化能力。

DBN具有以下几个优点:

  • DBN可以从高维、非线性、非高斯的数据中学习出抽象的特征表示,从而实现数据的降维和特征提取。

  • DBN可以用于生成新的数据样本,例如生成新的图像或文本,从而实现数据的增强和创造。

  • DBN可以用于多种任务,例如分类、回归、聚类、协同过滤、推荐系统等,只需在模型的顶层添加一个适当的输出层即可。

DBN也有以下几个缺点:

  • DBN的训练过程比较复杂和耗时,需要大量的计算资源和数据量。

  • DBN的训练过程涉及到很多超参数的选择,例如学习率、批量大小、采样步数、正则化项等,这些超参数对模型的性能有很大的影响,但是很难确定最优的值。

  • DBN的理论分析比较困难,很多性质和定理还没有得到严格的证明,例如模型的收敛性、稳定性、可解释性等

附录:

受限玻尔兹曼机应用场景

a5beb9b5b283ab132f8a7c152b5b1ce6.png

各种激活函数的优缺点

e1100bf2fbb47f081b8343292fe5f731.png

各种激活函数各有优缺点,在深度学习中都有其适用场景。

  • Sigmoid和Tanh函数是传统的激活函数,具有输出范围有限、优化稳定等优点,但容易过饱和,梯度弥散。

  • ReLU函数是近年来流行的激活函数,具有计算速度快、容易训练等优点,但容易发生“死神经元”问题。

  • Leaky ReLU、ELU和SELU等函数是ReLU函数的改进版本,解决了“死神经元”问题。

  • softmax函数常用于多分类任务,可以用来输出概率分布

参考网址

https://blog.echen.me/2011/07/18/introduction-to-restricted-boltzmann-machines/

https://github.com/python-pillow/Pillow/ Python 图像库 

https://blog.echen.me/2011/07/18/introduction-to-restricted-boltzmann-machines/ 受限玻尔兹曼机简介 (echen.me)

The End

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/585449.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用rust读取usb设备ACR122U的nfc卡片id

rust及其高效和安全著称,而且支持跨平台,所以就想使用这个rust开发一个桌面端程序,来读取nfc设备的nfc卡片的id信息,下面就做一个最简单的入门教程吧,也是我写的第三个rust应用。 当你电脑上安装好了rust环境之后&…

MySql篇——MySql使用常见问题及解决办法

这里汇总MySql使用常见问题及解决办法,会持续更新。 问题1.ERROR 1819 (HY000): Your password does not satisfy the current policy requirements。 含义:你设置的密码不符合当前的密码等级。 可使用 SHOW VARIABLES LIKE validate_password%; 查看…

Spring-4-代理

前面提到过,在Spring中有两种类型的代理:使用JDK Proxy类创建的JDK代理以及使用CGLIB Enhancer类创建的基于CGLIB的代理。 你可能想知道这两种代理之间有什么区别,以及为什么 Spring需要两种代理类型。 在本节中,将详细研究代理…

count distinct在spark中的运行机制

文章目录 预备 数据和执行语句Expand第一次HashAggregateShuffle and Second HashAggregate最后结果性能原文 预备 数据和执行语句 SELECT COUNT(*), SUM(items), COUNT(DISTINCT product), COUNT(DISTINCT category) FROM orders;假设源数据分布在两个1核的结点上&#xff0…

ElasticSearch 聚合统计

聚合统计 度量聚合:求字段的平均值,最小值,最大值,总和等 桶聚合:将文档分成不同的桶,桶的划分可以根据字段的值,范围,日期间隔 管道聚合:在桶聚合的结果上执行进一步计…

【Java 进阶篇】Redis 缓存优化:提升应用性能的不二选择

在现代的软件开发中,性能一直是开发者们追求的目标之一。对于数据库访问频繁、数据读取较慢的场景,使用缓存是提升性能的有效手段之一。而 Redis 作为一款高性能的内存数据库,被广泛用作缓存工具。本文将围绕 Redis 缓存优化进行详解&#xf…

swing快速入门(三十二)消息对话框

注释很详细,直接上代码 上一篇 新增内容 1.自定义对话框前列图标 2.消息对话框的若干种形式 package swing21_30;import javax.swing.*; import java.awt.*; import java.awt.event.ActionEvent;public class swing_test_30 {// 定义一个JFrameJFrame jFrame n…

Modbus,DNP3的理解

Modbus,DNP3的理解 目录概述需求: 设计思路实现思路分析1.概念理解3.区别 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy,skip hardness,make a better result,wait for…

【远程开发】穿越跳板机和CLion远程开发——全面配置流程

文章目录 穿越跳板机配置 ProxyJump 方案Cygwin上的配置 建立 SSH Tunneling 方案 代码映射目录映射方案配置Rsync加速 远程服务器方案(todo) 远程Debug tips:本文讲了两种穿越跳板机的方案(推荐ProxyJump方案),和两种代码映射的方案。实际任选一对搭配即…

【基础篇】七、线程上下文类加载器打破双亲委派机制

文章目录 1、SPI机制2、JDBC案例之SPI机制3、打破双亲委派机制:线程上下文类加载器4、打破双亲委派机制:osgi模块化5、JDK9之后的类加载器6、小总结 1、SPI机制 SPI,Service Provider Interface,是JDK内置的一种服务提供发现机制…

Evidential Deep Learning to Quantify Classification Uncertainty

本片文章发表于NeurIPS 2018。 文章链接:https://arxiv.org/abs/1806.01768 一、概述 近年来,神经网络在不同领域取得了革命性的进步,尤其是在dropout、normalization以及skip connection等方法被提出之后,撼动了整个机器学习领…

【Vue】computed详解

✨ 专栏介绍 在当今Web开发领域中,构建交互性强、可复用且易于维护的用户界面是至关重要的。而Vue.js作为一款现代化且流行的JavaScript框架,正是为了满足这些需求而诞生。它采用了MVVM架构模式,并通过数据驱动和组件化的方式,使…

【DDPM】扩散模型DDPM的原理介绍(2)

本篇博客是上一篇博客的续。在上一篇博客中介绍了扩散模型DDPM的扩散过程和反向过程,本篇博客主要介绍DDPM的优化目标、模型结构以及与其它深度生成模型的比较。废话不多说,那就开始吧~ 优化目标 模型的结构 与其它深度生成模型的比较 图片生成领域最常见…

OfficeWeb365 Indexs 任意文件读取漏洞复现

0x01 产品简介 OfficeWeb365 是专注于 Office 文档在线预览及PDF文档在线预览云服务,包括 Microsoft Word 文档在线预览、Excel 表格在线预览、Powerpoint 演示文档在线预览,WPS 文字处理、WPS 表格、WPS 演示及 Adobe PDF 文档在线预览。 0x02 漏洞概述 OfficeWeb365 /Pi…

YOLOv8改进 | 主干篇 | EfficientNetV1均衡缩放网络改进特征提取层

一、本文介绍 这次给大家带来的改进机制是EfficientNetV1主干,用其替换我们YOLOv8的特征提取网络,其主要思想是通过均衡地缩放网络的深度、宽度和分辨率,以提高卷积神经网络的性能。这种方法采用了一个简单但有效的复合系数,统一…

计算机网络【EPoll原理】

预备知识:内核poll钩子原理 内核函数poll_wait 把当前进程加入到驱动里自定义的等待队列上 ; 当驱动事件就绪后,就可以在驱动里自定义的等待队列上唤醒调用poll的进程; 故poll_wait作用:可以让驱动知道事件就绪的时…

数据加密、端口管控、行为审计、终端安全、整体方案解决提供商

PC端访问地址: https://isite.baidu.com/site/wjz012xr/2eae091d-1b97-4276-90bc-6757c5dfedee 以下是关于这几个概念的解释: 数据加密:这是一种通过加密算法和密钥将明文转换为密文,以及通过解密算法和解密密钥将密文恢复为明文…

数据缓存(Redis, Spring Cache)——后端

场景:给用户端展示的数据都是通过查询数据库所得,因此数据库访问压力会随着用户访问量增大而增加,从而导致系统响应慢、用户体验差。 方法:通过Redis缓存数据,减少查询数据库操作。(Redis的数据是存储在内存…

Qt 5.9.4 转 Qt 6.6.1 遇到的问题总结(一)

最近公司对大家的开发的硬件环境进行了升级,电脑主机的配置、显示器(两台大屏显示器)变得的逼格高多了。既然电脑上的开发环境都需要重装,就打算把开发环境也升级到最新版本,要用就用最新版本。下面对升级后的开发环境…

需求分析 :不得不重新去面对的一关。

软件需求分析 背景 深入需求产生的背景明确项目目标了解用户群体 需求优先级 需求的分类与整理明确需求优先级让团队成员都参与到需求分析中来,增加团队合作能力与效率 编写需求文档 整理好的需求编写成详细的需求文档包括需求的描述、输入/输出格式、功能流程…