Transformer (Attention Is All You Need) 论文精读笔记

Transformer(Attention Is All You Need)

Attention Is All You Need

参考:跟李沐学AI-Transformer论文逐段精读【论文精读】

摘要(Abstract)

首先摘要说明:目前,主流的序列转录(序列转录:给一个序列,转录为另外一个新的序列)模型都是基于RNN和CNN,且一般都是一个encoder和decoder的架构。在这些encoder和decoder中通常会使用注意力机制。然后,作者接着说,这篇文章提出了一个简单的只使用了注意力机制的模型架构-Transformer,而没有使用RNN或CNN等卷积操作。接着,作者将该架构在两个机器翻译任务上进行实验,可以实现更好的性能和更少的训练时间。

导言(Introduction)

首先作者介绍了RNN、GRN等主流的sequence models,然后作者指出,这里面有两个比较主流的模型,一个叫做语言模型,海有一个是当输出结构化信息比较多的时候的encoder和decoder架构的模型。

然后,作者讲了RNN的特点和缺点,在RNN中给一个序列,其做法是对序列从左往右一步一步往前做的。当前第t个词的状态 h t h_t ht是由前一个词的状态 h t − 1 h_{t-1} ht1和当前词本身决定的。这样的话RNN就可以把前边学到的历史信息通过 h t − 1 h_{t-1} ht1放到当下,然后和当前词做一些计算,然后输出。RNN存在的问题比较难以并行。

在第三段,作者指出,Attention机制已经在RNN中使用,主要是用在解决,如何将encoder的信息传递给decoder中。

在导言的最后一段中,作者指出,本篇文章提出了一个叫做Transformer的模型,不再使用之前的RNN layers,而是纯注意力机制。

相关工作(Background)

首先,作者指出如何使用卷积神经网络来替换掉RNN layers来减少时序计算。同时,又指出,使用CNN无法对比较长的序列进行建模。但是,如果使用Transformer的话,每次都能看到所有的像素。但是,CNN比较好的地方是可以做多个输出的channels,一个channel可以认为CNN去识别不一样的模式。为了实现和CNN一样的能够输出多个channel的功能,文中提出了一个叫做Multi-Head Attention机制(多头注意力机制)。

接下来,作者提出了Self-Attention(自注意力机制)。然后最后,作者指出,Transformer是第一个只依赖于自注意力机制的encoder和decoder架构模型。

模型架构(Model Architecture)

首先,作者说明大多数的序列转录模型中都具有encoder和decoder架构。然后,解释encoder是将一个序列表示为中间的向量表示形式,然后decoder是将中间的向量表示形式,表示为最后的输出。这里的输入和输出不一定具有同样的长度(例如:英文转为中文的话,长度不一定是一样的)。但是需要注意的是,在decoder解码的时候,结果输出是一个一个生成的,文中指出这种解码机制叫做自回归(auto-regressive模型,在这个模型中输入又是输出,即:过去时刻的输出又是当前时刻的输入)。

Transformer模型架构是将self-attention、point-wise和FCN(全连接层)堆叠在一起的。整个Transformer模型架构如下图所示。

在这里插入图片描述

上图中,左边部分为Transformer的encoder架构,右边部分为decoder架构。其中,encoder的输入是序列(可以是图片序列、语句序列等),decoder的输入是上一个decoder的输出。

编码器encoder

首先,作者介绍了encoder:使用6个完全一样的上图中的encoder组成。作者将6个encoder中的每一个叫做layer,其中每个layer中有两个sub layer。第一个sub layer叫做“Multi-Head self-attention”机制,第二个sub layer叫做point wise FFN(其实就是一个MLP前向传播网络)。对每个子层使用一个残差连接。最后使用一个layer normalization(层级正则化)。其中, L a y e r N o r m ( x + S u b l a y e r ( x ) ) LayerNorm(x+Sublayer(x)) LayerNorm(x+Sublayer(x))表示,针对每个encoder层来说,输入x首先经过sublayer层然后和x进行相加,之后再通过一个Norm层。文中说,将每个encoder层的输出向量维度设置为512。(这里和CNN不一样,在基于CNN架构的模型中对向量的维度是长度方向上减少,而channel方向上增加,这里只是使用一个固定维度为512的向量,所以Transformer相对来说架构比较简单)

解释LayerNorm(以及为什么在Transformer的架构中不使用BatchNorm)

在这里插入图片描述

上图中,解释了为什么Transformer中不使用Batch Norm而是使用Layer Norm。

解码器decoder

Transformer中decoder和encoder的架构很相似,数量也是N=6个进行堆叠。不一样的地方在于decoder中加入了第三个sub layer,这个第三子层同样是一个多头注意力机制,其作用为防止decoder在做预测的时候,不能看到当前t时刻之后的输入(因为Transformer中使用了注意力机制,同一时刻理论上所有的输入都是可以看到的,但是这样在解码的时候不合理,所以使用了这个Masked Multi-Head Attention Encoder,即使用一个掩码机制来限制decoder去接受当前时刻t之后的输入,从而保证训练和预测的时候行为是一致的。)

注意力Attention

首先作者介绍了Attention Function的含义:attention function是一个将一个query和一系列key-value对映射为输出(output)的函数。这里的query、keys、values、output都是一些向量。output是values的加权和,所以output的维度和values的维度是一样的。对于每个value对应的权重是该value对应的key与query计算相似度之后得到的。(这里计算相似度的函数不一样就会导致不一样的注意力机制)

Scaled Dot-Product Attention

在这里插入图片描述

文中提出的注意力机制中,query和key是等长的,都等于 d k d_k dk,values为 d v d_v dv。作者指出,将query和key做点积,结果作为相似度(如果两个等长向量的内积越大,即余弦值越大,那么两个向量的相似度越大)。将得到的结果除以 d k \sqrt{d_k} dk ,即向量的长度。query会和每一个key做内积,然后将得到的结果输入到softmax当中,得到N个非负的且加起来和等于1的权重。然后,将这些权重作用在N个key对应的N个value上面,这样就得到了最后的输出。

实际运算过程中对上述相似度计算过程的处理

在这里插入图片描述
query可以写成一个矩阵 Q Q Q(因为不止一个query),且需要注意的是上图中展示的Q(多个query组合得到的矩阵)中的query数量可以和key的数量不一致,但是每个query与key的长度一定是一致的,这样才能做内积。上图中的两个矩阵相乘之后,就可以得到一个 N × M N\times M N×M的矩阵。然后,将该矩阵除以 d k \sqrt{d_k} dk ,之后对结果的每一行做softmax即可(行与行之间是独立的)。然后,将结果乘以values即可。最后就可以得到 N × d v N\times d_v N×dv的矩阵。

然后,作者指出了上述提出的注意力机制和传统的注意力机制的区别。一般来说有两种注意力机制:加型注意力(可以处理query和key不等长的情况)。另外一个叫做点积的注意力机制。本文提出的注意力机制基本上和点积注意力机制一样,只是本文的注意力机制中除了 d k \sqrt{d_k} dk

为什么本文提出的注意力机制需要除以一个 d k \sqrt{d_k} dk

作者解释:当 d k d_k dk不是那么大的时候,其实除与不除基本没有区别。但是对于较长的key和query来说,两者点积之后得到的矩阵,在通过softmax之后,会更加向1和0(两端)靠拢。这样的话,最后计算梯度的时候,梯度会比较小,那么在训练的时候就会出现模型跑不动(训练不起来)情况。

在这里插入图片描述
上图左子图中包含Masked Attention,具体来说,假设query和key是等长的,那么对t时刻,query与key计算时,应该只看 k 1 − k t − 1 k_1-k_{t-1} k1kt1时刻,而不能看 k t k_t kt及其之后的时刻。(因为 k t k_t kt在t时刻还没有计算出来,但是对于注意力机制来说,实际上query可以看到所有key中内容,且query会与key中左右内容进行计算,计算是可以算的,但是在计算最后注意力机制输出的时候不要使用t时刻以及t时刻之后的key的内容即可,实际操作的时候,mask中将t以及t时刻之后的query与key计算的值换成非常大的负数,那么在通过softmax的时候,这些非常大的负数对应的权重就是0。)

Multi-Head Attention机制

在这里插入图片描述
作者在文中说,通过将query/key/value投影到一个低维的向量中,投影h次,然后再做h次的注意力函数,然后将每个函数的输出并到一起,然后再投影得到最终的输出。为什么使用多头注意力机制,是因为本文提出的注意力机制实际上是没有可学习的参数,那么上图中的多头注意力机制中对于query/key/value输入首先通过的Linear线性层中的w和b是可以学习的。也就是说,给h次机会,希望这个多头注意力机制能够学习到不同的投影方法,使得在投影后的那个空间可以匹配得到不同模式需要的相似函数。(这个多头注意力机制与CNN中的多个输出通道有一种相似的感觉)

在实际操作中,作者指出,由于注意力机制中残差连接的存在,输入和输出维度本来就是一样的,那么这个时候使用h个多头注意力机制,对应到每个注意力机制的输出就是原始的单注意力机制/h(这里原始的输入输出维度为512,h=8,那么多头注意力机制中每个头的输入输出维度为512/8=64)

在Transformer架构中使用注意力机制

在这里插入图片描述
上图左子图为encdoer,其中首先将input输入复制三份,分别作为Multi-Head Attention中的key/value/query(这就叫做自注意力机制)。右子图中为decoder,其中首先为一个Masked Multi-Head Attention机制(前边已经解释过),然后是一个和encoder一样的Multi-Head Attention(该注意力层中,key/value来自于encoder,而query来自于decoder的第一个Masked Multi-Head Attention)。

Point wise Feed Forward Networks

在这里插入图片描述
其实,就是一个全连接前向传播网络,就是一个MLP(多层感知机)。但是,作者指出,和传统的FFN不一样的地方在于,其将序列中的每个点(可以理解为,加入输入是一段英文序列,那么一个点就表示一个单词)做一次FFN,即对每个词作用同样的一个MLP(共享权重)。其中,x表示一个512的向量。其中的 W 1 W_1 W1会将512投影成2048维的向量。然后, W 2 W_2 W2会把2048维的向量又投影回512。

扩展:Transformer与CNN的区别

在这里插入图片描述
上图中左边为Transformer的注意力机制,右边为RNN(循环神经网络)。其中,RNN为了得到历史信息,其需要在t时刻使用t-1时刻的信息接入,这种就会造成一个问题,当前t时刻的信息会越来越大。而对于Transformer来说,其做到与RNN相同的获得历史全局信息的过程是使用多个注意力头。

embedding and softmax层

Transformer的输入是多个词源(token),那么在处理的时候需要将每个token映射为一个向量,那么embedding就是针对任何一个token,学习一个长为d的向量来表示。编码器和解码器都有一个embedding过程。最后在softmax之前的Linear线性层也需要一个embedding,这三个embedding层是同样的权重,这样训练起来会简单一些。还有一点,作者在文中说到,将权重乘了 d m o d e l \sqrt{d_{model}} dmodel (原始论文中, d m o d e l d_{model} dmodel就是512)。因为,对于embedding层来说,当学习的向量维度变大之后,那么权重值就会变小,乘以 d m o d e l d_{model} dmodel之后,再将embedding之后的token对应的向量与下边的positional encoding层进行相加,会使得两个向量在一个大概相同的scale进行。

positional encoding层

有这个层的原因是:attention层是不会有时序信息的。具体的公式如下:

在这里插入图片描述
上式中,positional encoding是使用周期不一样的sin和cos计算出来的。

为什么使用自注意力机制

在这里插入图片描述
上表中,比较了四种不同类型的层的计算复杂度、顺序计算复杂度(就是说下一步计算需要等前边n步计算完成才能进行计算)、最大路径长度(一个信息从一个点走到另一个点需要走多远)。从表中可以看出,当序列的长度和整个模型宽度差不多的时候且深度都一样的话,实际上attention、rnn、cnn三个模型的复杂度基本上是差不多的。但是attention在信息的糅杂性上好一些。

实际上,attention由于对模型做的假设很少,所以需要更多的数据和更大的模型才可以训练收敛。所以现在基于Transformer的模型都是特别大和特别贵。

训练设置(Training Settings)

文中指出,在训练的时候使用AdamW优化器对模型进行优化,同时使用drop out层对模型进行正则化操作,然后还使用Label Smoothing技术(最先出现在Inception V3中)。

Label Smoothing解释:在使用softmax做最后的输出的时候,传统操作是如果输出接近于1,那么才认为是正确的,但是这里采用设置阈值为0.1(表示只要对一个词预测的置信度等于或超过0.1,那么就认为是正确的。)

但是使用这种技术会导致最后的模型不确信度会增加。

Transformer中超参数的比较

在这里插入图片描述
虽然上表中看上去很多超参数,但是在实际训练的时候,其中能调节的:N、 d m o d e l d_{model} dmodel、h(多头注意力中的头的数量h),其他的超参数都是计算得到的。

结论(Conclusion)

结论中首先说明,本文使用Transformer模型应用在机器翻译任务中,同时取代了之前使用较多的RNN layers,转而使用multi-headed slef-attention机制(这个也是Transformer模型的核心所在)。同时,结论又指出,在机器翻译任务上,Transformer相较于RNN或CNN架构的模型,具有更好性能和更快的训练收敛速度。然后,作者又说,对于Transformer这种纯注意力机制的模型感到激动(这在后边的爆发的基于Transformer的各种任务模型架构上得到了印证)。将Transformer模型架构用在输入形式不单纯为文本形式的其他形式,例如图片、视频等也是作者未来研究的方向。同时,使得生成不那么有序列也是未来的研究目标(个人举例:DETR中对N=100个预测框的生成就是一次性得到的)。

评价

这篇文章写作很简洁,一段话基本上就是在写一件事情。在写文章的时候可以将一些不重要的东西放到附录里面。

Attention实际上只是做了整个序列信息的的聚合操作。后边的MLP等层是缺一不可的。如果缺少了这些Attention实际上是什么都学不到的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/58520.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

腾讯云学生服务器申请、学生认证入口及学生机价格表

腾讯云学生服务器申请、学生认证入口及学生机价格表,学生机申请流程,腾讯云学生服务器优惠活动:轻量应用服务器2核2G学生价30元3个月、58元6个月、112元一年,轻量应用服务器4核8G配置191.1元3个月、352.8元6个月、646.8元一年&…

【超简单】远程服务器使用 plt.show() 和 cv2.imshow() 可视化图像

远程服务器可视化图像 我的配置MobaXterm 远程显示VSCode 远程显示 我的配置 服务器 Ubuntu 20.04.3 LTSAnaconda 本地电脑 Win11MobaXtermVSCode MobaXterm 远程显示 配置好服务器连接(此处略); 连接服务器,并激活使用的 A…

zookeeper启动失败(Error contacting service. It is probably not running.)

问题描述 启动zk时报如下错误: 解决办法 先查日志找找报错原因: 找到zk安装目录下的logs文件夹下的日志文件,查看连接失败原因: 如果是端口问题,修改conf文件,指定端口重新启动即可: 注&a…

JUC并发编程--------基础篇

一、多线程的相关知识 栈与栈帧 我们都知道 JVM 中由堆、栈、方法区所组成,其中栈内存是给谁用的呢?其实就是线程,每个线程启动后,虚拟 机就会为其分配一块栈内存。 每个栈由多个栈帧(Frame)组成&#xf…

算法通过村第四关-栈白银笔记|括号问题

文章目录 前言1. 括号匹配问题2. 最小栈问题3. 最大栈 总结 前言 提示:如果让我送给年轻人四个字,就是:量力而行。 量力而行不会失眠,不会啃老,不会为各种考试焦虑。顺其自然活得轻松。其实,量力而行最易大…

小米面试题——不用加减乘除计算两数之和

前言 (1)刷B站看到一个面试题,不用加减乘除计算两数之和。 (2)当时我看到这个题目,第一反应就是感觉这是一个数电题目。不过需要采用C语言的方式编写出来。 (3)不过看到大佬的代码之…

算法与数据结构(九)--并查集

并查集是一种树型的数据结构,并查集可以高校地进行如下操作: *查询元素p和元素q是否在同一组 *合并元素p和元素q所在的组 一.并查集结构 并查集也是一种树型结构,这种树的要求比较简单:1.每个元素都唯一的对应一个结点&#xff…

优美而高效:解决服务器通信问题

题目背景 在这个问题中,我们面临着一幅服务器分布图。图中的每个单元格可能有服务器(标记为1)或者没有(标记为0)。我们的任务是找出能够与至少一台其他服务器进行通信的服务器数量。 算法思路 为了解决这个问题&…

无涯教程-Python机器学习 - Stochastic Gradient Boosting函数

它也称为梯度提升机。在下面的Python食谱中,我们将通过使用pima Indians糖尿病数据集上的 sklearn 的 GradientBoostingClassifier 类来创建随机梯度Boostingensemble模型进行分类。 首先,导入所需的软件包,如下所示: from pandas import read_csv from sklearn.model_select…

国民八路参考文献:[8]许少辉.乡村振兴战略下传统村落文化旅游设计[M]北京:中国建筑工业出版社,2022.

国民八路参考文献:[8]许少辉.乡村振兴战略下传统村落文化旅游设计[M]北京:中国建筑工业出版社,2022&#xff0…

SpringCloud教程 | 第二篇: 服务消费者(rest+ribbon)

在上一篇文章,讲了服务的注册和发现。在微服务架构中,业务都会被拆分成一个独立的服务,服务与服务的通讯是基于http restful的。Spring cloud有两种服务调用方式,一种是ribbonrestTemplate,另一种是feign。在这一篇文章…

Python requests实现图片上传接口自动化测试

最近帮别人写个小需求,需要本地自动化截图,然后图片自动化上传到又拍云,实现自动截图非常简单,在这里就不详细介绍了,主要和大家写下,如何通过Pythonrequests实现上传本地图片到又拍云服务器。 话不多说&a…

Kali 软件管理

kali 更新 1. 查看发行版本 ┌──(root㉿kali)-[~] └─# lsb_release -a No LSB modules are available. Distributor ID: Kali Description: Kali GNU/Linux Rolling Release: 2023.2 Codename: kali-rolling2. 查看内核版本 ┌──(root㉿kali)-[~] └─…

正则常见问题及解决方案

使用正则处理问题的基本思路。有一些方法比较固定,比如将问题分解成多个小问题,每个小问题见招拆招:某个位置上可能有多个字符的话,就⽤字符组。某个位置上有多个字符串的话,就⽤多选结构。出现的次数不确定的话&#…

突破连接壁垒,火山引擎边缘云网络的先行之路

在万物互联时代,信息不局限于人与人之间的交流,大量的机器设备也需要进行信息交流。就在去年,我国率先迎来了“物超人”的历史性时刻,即物联网连接数超越了人联网连接数。边缘云的发展进入到“黄金十年”。 “要致富,…

JavaFX 加载 fxml 文件

JavaFX 加载 fxml 文件主要有两种方式,第一种方式通过 FXMLLoader 类直接加载 fxml 文件,简单直接,但是有些控件目前还不知道该如何获取,所以只能显示,目前无法处理。第二种方式较为复杂,但是可以使用与 fx…

Docker容器与虚拟化技术:Docker compose部署LNMP

目录 一、理论 1.LNMP架构 2.背景 3.Dockerfile部署LNMP 3.准备Nginx镜像 4.准备MySQL容器 5.准备PHP镜像 6.上传wordpress软件包 7.编写docker-compose.yml 8.构建与运行docker-compose 9.启动 wordpress 服务 10.浏览器访问 11.将运行中的 docker容器保存为 doc…

智能设计师的崛起:探寻智元兔AI设计师的神奇之旅

AI绘图是指利用人工智能技术来生成或改善绘图作品的方法和工具。通过使用深度学习和生成对抗网络等算法,人工智能可以学习和模仿艺术家的创作风格,生成逼真的艺术作品。 智元兔-AI设计师是一款基于人工智能设计工具,利用机器学习和深度学习技…

什么是ChatGPT水印,ChatGPT生成的内容如何不被检测出来,原理什么?

太长不看版 1. 什么是ChatGPT水印? ChatGPT水印是AI以伪随机方式生成的独特tokens序列。该序列用来作为水印,以区分AI生成内容和人类原创内容。 2. 如何规避ChatGPT水印? 一种规避方法是使用其他AI模型改写ChatGPT生成的文本。这会破坏水…

大数据(二)大数据行业相关统计数据

大数据(二)大数据行业相关统计数据 目录 一、大数据相关的各种资讯 二、转载自网络的大数据统计数据 2.1、国家大数据政策 2.2、产业结构分析 2.3、应用结构分析 2.4、数据中心 2.5、云计算 一、大数据相关的各种资讯 1. 据IDC预测&#xff0…