【Week-P3】CNN天气识别

文章目录

  • 一、环境配置
  • 二、准备数据
  • 三、搭建网络结构
  • 四、开始训练
  • 五、查看训练结果
  • 六、总结
    • 6.1 不改变学习率的前提下,将训练epoch分别增加到50、60、70、80、90
      • (1)epoch = 50 的训练情况如下:
      • (2)epoch = 60 的训练情况如下:
      • (3)epoch = 70 的训练情况如下:
      • (4)epoch = 80 的训练情况如下:
      • (5)epoch = 90 的训练情况如下:
    • 6.2 在epoch=50、60、70、80、90的基础上修改固定学习率为动态学习率
      • (1)epoch = 50 的训练情况如下:
      • (2)epoch = 60 的训练情况如下:
      • (3)epoch = 70 的训练情况如下:
      • (4)epoch = 80 的训练情况如下:
      • (5)epoch = 90 的训练情况如下:

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

🍺本文基础要求:
(1)本地读取并加载数据。
(2)测试集accuracy到达93%
🍻拔高:
(1)测试集accuracy到达95%
(2)调用模型识别一张本地图片

一、环境配置

# 1. 设置环境
import sys
from datetime import datetimeimport torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasetsimport os,PIL,pathlib,randomprint("---------------------1.配置环境------------------")
print("Start time: ", datetime.today())
print("Pytorch version: " + torch.__version__)
print("Python version: " + sys.version)device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

在这里插入图片描述

二、准备数据

导入数据分四步:
● 第一步:使用pathlib.Path()函数将字符串类型的文件夹路径转换为pathlib.Path对象。
● 第二步:使用glob()方法获取data_dir路径下的所有文件路径,并以列表形式存储在data_paths中。
● 第三步:通过split()函数对data_paths中的每个文件路径执行分割操作,获得各个文件所属的类别名称,并存储在classNames
● 第四步:打印classNames列表,显示每个文件所属的类别名称。

'''
D:\jupyter notebook\DL-100-days\datasets\P3-天气识别\weather_photos\
'''
print("---------------------2.1 导入本地数据------------------")
data_dir = 'D:/jupyter notebook/DL-100-days/datasets/P3-天气识别/weather_photos/'
data_dir = pathlib.Path(data_dir)data_paths = list(data_dir.glob('*'))
classNames = [str(path).split("\\")[1] for path in data_paths]
classNamesprint("---------------------2.2 数据可视化------------------")
import matplotlib.pyplot as plt
from PIL import Image# 指定图像文件夹路径
image_folder = 'D:/jupyter notebook/DL-100-days/datasets/P3-天气识别/weather_photos/cloudy/'# 获取文件夹中的所有图像文件
image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", ".png", ".jpeg"))]# 创建Matplotlib图像
fig, axes = plt.subplots(3, 8, figsize=(16, 6))# 使用列表推导式加载和显示图像
for ax, img_file in zip(axes.flat, image_files):img_path = os.path.join(image_folder, img_file)img = Image.open(img_path)ax.imshow(img)ax.axis('off')# 显示图像
plt.tight_layout()
plt.show()print("---------------------2.3 定义train_transforms函数,完成图片尺寸归一化------------------")
total_datadir = 'D:\jupyter notebook\DL-100-days\datasets\P3-天气识别\weather_photos'# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
total_dataprint("---------------------2.4 划分数据集------------------")
# 使用torch.utils.data.random_split()方法进行数据集划分。
# 该方法将总体数据total_data按照指定的大小比例([train_size, test_size])随机划分为训练集和测试集,并将划分结果分别赋值给train_dataset和test_dataset两个变量。
train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_datasetprint("---------------------2.4.1 检查训练集、测试集的size------------------")
# ● train_size表示训练集大小,通过将总体数据长度的80%转换为整数得到;
# ● test_size表示测试集大小,是总体数据长度减去训练集大小。
train_size,test_sizeprint("---------------------2.4.1 检查训练集、测试集的size------------------")
batch_size = 32
# ⭐torch.utils.data.DataLoader()参数详解
train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=1)for X, y in test_dl:print("Shape of X [N, C, H, W]: ", X.shape)print("Shape of y: ", y.shape, y.dtype)break

在这里插入图片描述

三、搭建网络结构

print("---------------------3. 定义简单CNN网络------------------")
import torch.nn.functional as Fclass Network_bn(nn.Module):def __init__(self):super(Network_bn, self).__init__()"""nn.Conv2d()函数:第一个参数(in_channels)是输入的channel数量第二个参数(out_channels)是输出的channel数量第三个参数(kernel_size)是卷积核大小第四个参数(stride)是步长,默认为1第五个参数(padding)是填充大小,默认为0"""self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn1 = nn.BatchNorm2d(12)self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)self.bn2 = nn.BatchNorm2d(12)self.pool = nn.MaxPool2d(2,2)self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn4 = nn.BatchNorm2d(24)self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)self.bn5 = nn.BatchNorm2d(24)self.fc1 = nn.Linear(24*50*50, len(classeNames))def forward(self, x):x = F.relu(self.bn1(self.conv1(x)))      x = F.relu(self.bn2(self.conv2(x)))     x = self.pool(x)                        x = F.relu(self.bn4(self.conv4(x)))     x = F.relu(self.bn5(self.conv5(x)))  x = self.pool(x)                        x = x.view(-1, 24*50*50)x = self.fc1(x)return xdevice = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))model = Network_bn().to(device)
model

在这里插入图片描述

四、开始训练

print("---------------------4. 训练模型------------------")
print("---------------------4.1 设置超参数------------------")
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)print("---------------------4.2 编写训练函数------------------")
# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片num_batches = len(dataloader)   # 批次数目,1875(60000/32)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_lossprint("---------------------4.3 编写测试函数------------------")
def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_lossprint("---------------------4.4 正式训练------------------")
epochs     = 20
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

在这里插入图片描述

五、查看训练结果

print("---------------------5. 训练结果可视化------------------")
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述
测试准确率Test_Accuracy = 89.8%。

六、总结

尝试提高test_accuracy的值。

【提高准确率方法总结】

6.1 不改变学习率的前提下,将训练epoch分别增加到50、60、70、80、90

不同epoch次数得到的test_accuracy的结果如下表:

epochtest_accuracy
epoch = 5092.4%
epoch = 6093.3%
epoch = 7092.4%
epoch = 8094.2%
epoch = 9090.2%

(1)epoch = 50 的训练情况如下:

得到训练情况如下:
在这里插入图片描述
在这里插入图片描述
结论:50个epoch训练完,test_accuracy = 92.4%。在学习率不变的情况下,增加epoch次数是能够增加test_accuracy的值的。

(2)epoch = 60 的训练情况如下:

在这里插入图片描述
在这里插入图片描述

(3)epoch = 70 的训练情况如下:

在这里插入图片描述

在这里插入图片描述

(4)epoch = 80 的训练情况如下:

在这里插入图片描述
在这里插入图片描述

(5)epoch = 90 的训练情况如下:

在这里插入图片描述
在这里插入图片描述

6.2 在epoch=50、60、70、80、90的基础上修改固定学习率为动态学习率

【参考这里】

使用pytorch提供的学习率,在torch.optim.lr_scheduler内部,基于当前epoch的数值,封装了几种相应的动态学习率调整方法,该部分的官方手册传送门——optim.lr_scheduler官方文档。需要注意的是学习率的调整需要应用在优化器参数更新之后,也就是说:

optimizer = torch.optim.XXXXXXX()#具体optimizer的初始化
scheduler = torch.optim.lr_scheduler.XXXXXXXXXX()#具体学习率变更策略的初始化
for i in range(epoch):for data,label in dataloader:out = net(data)output_loss = loss(out,label)optimizer.zero_grad()loss.backward()optimizer.step()scheduler.step()

在这里插入图片描述
设置动态学习率,不同epoch次数的test_accuracy值如下表所示:

epochtest_accuracy
epoch = 5092.0%
epoch = 6093.3%
epoch = 7092.4%
epoch = 8093.3%
epoch = 9087.6%

(1)epoch = 50 的训练情况如下:

训练情况如下:test_accuracy最高能达到92.9%,然后又降下来,等50个epoch都训练完,最终的test_accuracy = 92.0%。
在这里插入图片描述
在这里插入图片描述

(2)epoch = 60 的训练情况如下:

在这里插入图片描述
在这里插入图片描述

(3)epoch = 70 的训练情况如下:

在这里插入图片描述
在这里插入图片描述

(4)epoch = 80 的训练情况如下:

在这里插入图片描述
在这里插入图片描述

(5)epoch = 90 的训练情况如下:

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/584682.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构(栈和列队模拟实现)

栈和列队模拟实现 一.栈1.1栈的概念及其结构1.2栈的实现1.2.1 stack.h1.2.2 stack.c 二.列队2.1队列的概念及结构 2.2队列的实现2.2.1 Queue.h2.2.2 Queue.cpp 一.栈 1.1栈的概念及其结构 栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操…

JAVA B/S架构智慧工地源码,PC后台管理端、APP移动端

智慧工地系统充分利用计算机技术、互联网、物联网、云计算、大数据等新一代信息技术,以PC端,移动端,设备端三位一体的管控方式为企业现场工程管理提供了先进的技术手段。让劳务、设备、物料、安全、环境、能源、资料、计划、质量、视频监控等…

前后端分离nodejs+vue+ElementUi网上订餐系统69b9

课题主要分为两大模块:即管理员模块和用户模块,主要功能包括个人中心、用户管理、菜品类型管理、菜品信息管理、留言反馈、在线交流、系统管理、订单管理等; 运行软件:vscode 前端nodejsvueElementUi 语言 node.js 框架:Express/k…

【go语言】Chromeless简介及Chromedp库实现模拟登录截屏

一、什么是Chromeless chromeless 是一个基于 Node.js 的库,用于通过无头浏览器(Headless Chrome)进行自动化测试和网页截图。它允许开发者使用 JavaScript 脚本来控制和操作浏览器,而无需实际打开浏览器窗口。 以下是一些 chro…

GET和POST请求

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、GET请求二、POST请求三.幂等性是什么总结 前言 GET和POST是HTTP协议中的两种常见的请求方法,它们定义了客户端与服务器之间进行通信时的不同方…

STM32CubeMX教程10 RTC 实时时钟 - 周期唤醒、闹钟A/B事件和备份寄存器

目录 1、准备材料 2、实验目标 3、实验流程 3.0、前提知识 3.1、CubeMX相关配置 3.1.1 、时钟树配置 3.1.2、外设参数配置 3.1.3 、外设中断配置 3.2、生成代码 3.2.1、外设初始化函数调用流程 3.2.2、外设中断函数调用流程 3.2.3、添加其他必要代码 4、常用函数 …

Linux性能优化全景指南

Part1 Linux性能优化 1、性能优化性能指标 高并发和响应快对应着性能优化的两个核心指标:吞吐和延时 应用负载角度:直接影响了产品终端的用户体验系统资源角度:资源使用率、饱和度等 性能问题的本质就是系统资源已经到达瓶颈,但…

深度学习在自然语言处理中的应用

深度学习在自然语言处理中的应用 一、引言 随着人工智能技术的飞速发展,自然语言处理(NLP)作为其重要分支,已经在诸多领域取得了令人瞩目的成果。深度学习作为当前最炙手可热的技术,为NLP带来了革命性的变革。本文将…

python+django网上银行业务综合管理系统vue_bvj8b

本课题主要研究如何用信息化技术改善传统网上银行综合管理行业的经营和管理模式,简化网上银行综合管理的难度,根据管理实际业务需求,调研、分析和编写系统需求文档,设计编写符合银行需要的系统说明书,绘制数据库结构模…

一周中的第几天

一周中的第几天 import java.text.ParseException; import java.text.SimpleDateFormat; import java.util.Arrays; import java.util.Calendar; import java.util.Date;class Solution {public String dayOfTheWeek(int day, int month, int year) {String[] weekDays {&qu…

【论文阅读】Self-Paced Curriculum Learning

论文下载 代码 Supplementary Materials bib: INPROCEEDINGS{,title {Self-Paced Curriculum Learning},author {Lu Jiang and Deyu Meng and Qian Zhao and Shiguang Shan and Alexander Hauptmann},booktitle {AAAI},year {2015},pages {2694--2700} }1. 摘…

php获取访客IP、UA、操作系统、浏览器等信息

最近有个需求就是获取下本地的ip地址、网上搜索了相关的教程,总结一下分享给大家、有需要的小伙伴可以参考一下 一、简单的获取 User Agent 信息代码: echo $_SERVER[HTTP_USER_AGENT]; 二、获取访客操作系统信息: /** * 获取客户端操作系统信息,包括win10 * pa…

R语言【base】——stop():停止执行当前表达式并执行错误操作。

Package base version 4.2.0 Parameters stop(..., call. TRUE, domain NULL)geterrmessage() 参数【...】:零个或多个对象,这些对象可以强制转换为字符(并且粘贴在一起,没有分隔符)或单个条件对象。 参数【call.…

Linux面试题 5

请描述一下 ping 命令。 答:ping 命令用于测试和诊断网络连接是否正常以及计算机之间的延迟。它发送 ICMP 回显请求报文到目标主机,然后等待目标主机返回 ICMP 回显应答报文,从而判断网络连接状态和延迟。 在 Linux 中,如何使用 …

Error in onLoad hook: “URIError: URI malformed“ found in…报错处理以及完善uniapp针对对象传参

使用uniapp传参的过程中遇到这么一个问题,当我们需要传整个对象作为参数时,我会先将这个对象先编码,然后再解码,从而获取到怎么参数,平常实操的时候也没有遇到过问题,但是今天测试的时候,刚好一…

SAP缓存 表缓存( Table Buffering)

本文主要介绍SAP中的表缓存在查询数据,更新数据时的工作情况以及对应概念。 SAP表缓存的工作 查询数据 更新数据 删除数据 表缓存的概念 表缓存技术设置属性 不允许缓冲: 允许缓冲,但已关闭: 缓冲已激活: 已…

搜索引擎推广的实践技巧提升你的品牌影响力-华媒舍

搜索引擎推广是一种有效提升品牌影响力的推广策略。通过关键词优化、广告创意设计、定向投放和数据分析与优化等实践技巧,可以提高品牌的知名度、点击率和转化率。在实施引擎霸屏推广之前,还需对实践效果进行评估,以确保推广策略的有效性和适…

鸿蒙Harmony(七)ArkUI--循环foreachList组件自定义组件

循环foreach import Prompt from system.promptclass Item {icon: Resourcename: stringprice: numberconstructor(icon: Resource, name: string, price: number) {this.icon iconthis.name namethis.price price} }Entry Component struct Index {State message: string …

k8s报错处理

解决failed to verify certificate: x509报错问题 [rootmaster1 home]# kubectl get nodes Unable to connect to the server: tls: failed to verify certificate: x509: certificate signed by unknown authority (possibly because of “crypto/rsa: verification error” …

百度地图添加坐标点

​​​​​​html <!DOCTYPE html><html xmlns"http://www.w3.org/1999/xhtml"> <head runat"server"><meta http-equiv"Content-Type" content"text/html; charsetutf-8" /><title>查看签到信息-地图…