2023 楚慧杯 --- Crypto wp

文章目录

      • 初赛
        • so large e
      • 决赛
        • JIGE

初赛

so large e

题目:

from Crypto.Util.number import *
from Crypto.PublicKey import RSA
from flag import flag
import randomm = bytes_to_long(flag)p = getPrime(512)
q = getPrime(512)
n = p*q
e = random.getrandbits(1024)
assert size(e)==1024
phi = (p-1)*(q-1)
assert GCD(e,phi)==1
d = inverse(e,phi)
assert size(d)==269pub = (n, e)
PublicKey = RSA.construct(pub)
with open('pub.pem', 'wb') as f :f.write(PublicKey.exportKey())c = pow(m,e,n)
print('c =',c)print(long_to_bytes(pow(c,d,n)))#c = 6838759631922176040297411386959306230064807618456930982742841698524622016849807235726065272136043603027166249075560058232683230155346614429566511309977857815138004298815137913729662337535371277019856193898546849896085411001528569293727010020290576888205244471943227253000727727343731590226737192613447347860

读取公钥得到n,e,

e = 113449247876071397911206070019495939088171696712182747502133063172021565345788627261740950665891922659340020397229619329204520999096535909867327960323598168596664323692312516466648588320607291284630435682282630745947689431909998401389566081966753438869725583665294310689820290368901166811028660086977458571233n = 116518679305515263290840706715579691213922169271634579327519562902613543582623449606741546472920401997930041388553141909069487589461948798111698856100819163407893673249162209631978914843896272256274862501461321020961958367098759183487116417487922645782638510876609728886007680825340200888068103951956139343723

根据代码,获悉
0.25 ≤ d n = 0.263 ≤ 0.292 0.25 \le \frac{d}{n} = 0.263\le0.292 0.25nd=0.2630.292
满足 Boneh and Durfee attack
直接套用模板,修改一下delta 和m即可
其中delta = 0.263,m = 5

exp:

#sage
from __future__ import print_function
import time############################################
# Config
##########################################"""
Setting debug to true will display more informations
about the lattice, the bounds, the vectors...
"""
debug = True"""
Setting strict to true will stop the algorithm (and
return (-1, -1)) if we don't have a correct
upperbound on the determinant. Note that this
doesn't necesseraly mean that no solutions
will be found since the theoretical upperbound is
usualy far away from actual results. That is why
you should probably use `strict = False`
"""
strict = False"""
This is experimental, but has provided remarkable results
so far. It tries to reduce the lattice as much as it can
while keeping its efficiency. I see no reason not to use
this option, but if things don't work, you should try
disabling it
"""
helpful_only = True
dimension_min = 7 # stop removing if lattice reaches that dimension############################################
# Functions
########################################### display stats on helpful vectors
def helpful_vectors(BB, modulus):nothelpful = 0for ii in range(BB.dimensions()[0]):if BB[ii,ii] >= modulus:nothelpful += 1print(nothelpful, "/", BB.dimensions()[0], " vectors are not helpful")# display matrix picture with 0 and X
def matrix_overview(BB, bound):for ii in range(BB.dimensions()[0]):a = ('%02d ' % ii)for jj in range(BB.dimensions()[1]):a += '0' if BB[ii,jj] == 0 else 'X'if BB.dimensions()[0] < 60:a += ' 'if BB[ii, ii] >= bound:a += '~'print(a)# tries to remove unhelpful vectors
# we start at current = n-1 (last vector)
def remove_unhelpful(BB, monomials, bound, current):# end of our recursive functionif current == -1 or BB.dimensions()[0] <= dimension_min:return BB# we start by checking from the endfor ii in range(current, -1, -1):# if it is unhelpful:if BB[ii, ii] >= bound:affected_vectors = 0affected_vector_index = 0# let's check if it affects other vectorsfor jj in range(ii + 1, BB.dimensions()[0]):# if another vector is affected:# we increase the countif BB[jj, ii] != 0:affected_vectors += 1affected_vector_index = jj# level:0# if no other vectors end up affected# we remove itif affected_vectors == 0:print("* removing unhelpful vector", ii)BB = BB.delete_columns([ii])BB = BB.delete_rows([ii])monomials.pop(ii)BB = remove_unhelpful(BB, monomials, bound, ii-1)return BB# level:1# if just one was affected we check# if it is affecting someone elseelif affected_vectors == 1:affected_deeper = Truefor kk in range(affected_vector_index + 1, BB.dimensions()[0]):# if it is affecting even one vector# we give up on this oneif BB[kk, affected_vector_index] != 0:affected_deeper = False# remove both it if no other vector was affected and# this helpful vector is not helpful enough# compared to our unhelpful oneif affected_deeper and abs(bound - BB[affected_vector_index, affected_vector_index]) < abs(bound - BB[ii, ii]):print("* removing unhelpful vectors", ii, "and", affected_vector_index)BB = BB.delete_columns([affected_vector_index, ii])BB = BB.delete_rows([affected_vector_index, ii])monomials.pop(affected_vector_index)monomials.pop(ii)BB = remove_unhelpful(BB, monomials, bound, ii-1)return BB# nothing happenedreturn BB""" 
Returns:
* 0,0   if it fails
* -1,-1 if `strict=true`, and determinant doesn't bound
* x0,y0 the solutions of `pol`
"""
def boneh_durfee(pol, modulus, mm, tt, XX, YY):"""Boneh and Durfee revisited by Herrmann and Mayfinds a solution if:* d < N^delta* |x| < e^delta* |y| < e^0.5whenever delta < 1 - sqrt(2)/2 ~ 0.292"""# substitution (Herrman and May)PR.<u, x, y> = PolynomialRing(ZZ)Q = PR.quotient(x*y + 1 - u) # u = xy + 1polZ = Q(pol).lift()UU = XX*YY + 1# x-shiftsgg = []for kk in range(mm + 1):for ii in range(mm - kk + 1):xshift = x^ii * modulus^(mm - kk) * polZ(u, x, y)^kkgg.append(xshift)gg.sort()# x-shifts list of monomialsmonomials = []for polynomial in gg:for monomial in polynomial.monomials():if monomial not in monomials:monomials.append(monomial)monomials.sort()# y-shifts (selected by Herrman and May)for jj in range(1, tt + 1):for kk in range(floor(mm/tt) * jj, mm + 1):yshift = y^jj * polZ(u, x, y)^kk * modulus^(mm - kk)yshift = Q(yshift).lift()gg.append(yshift) # substitution# y-shifts list of monomialsfor jj in range(1, tt + 1):for kk in range(floor(mm/tt) * jj, mm + 1):monomials.append(u^kk * y^jj)# construct lattice Bnn = len(monomials)BB = Matrix(ZZ, nn)for ii in range(nn):BB[ii, 0] = gg[ii](0, 0, 0)for jj in range(1, ii + 1):if monomials[jj] in gg[ii].monomials():BB[ii, jj] = gg[ii].monomial_coefficient(monomials[jj]) * monomials[jj](UU,XX,YY)# Prototype to reduce the latticeif helpful_only:# automatically removeBB = remove_unhelpful(BB, monomials, modulus^mm, nn-1)# reset dimensionnn = BB.dimensions()[0]if nn == 0:print("failure")return 0,0# check if vectors are helpfulif debug:helpful_vectors(BB, modulus^mm)# check if determinant is correctly boundeddet = BB.det()bound = modulus^(mm*nn)if det >= bound:print("We do not have det < bound. Solutions might not be found.")print("Try with highers m and t.")if debug:diff = (log(det) - log(bound)) / log(2)print("size det(L) - size e^(m*n) = ", floor(diff))if strict:return -1, -1else:print("det(L) < e^(m*n) (good! If a solution exists < N^delta, it will be found)")# display the lattice basisif debug:matrix_overview(BB, modulus^mm)# LLLif debug:print("optimizing basis of the lattice via LLL, this can take a long time")BB = BB.LLL()if debug:print("LLL is done!")# transform vector i & j -> polynomials 1 & 2if debug:print("looking for independent vectors in the lattice")found_polynomials = Falsefor pol1_idx in range(nn - 1):for pol2_idx in range(pol1_idx + 1, nn):# for i and j, create the two polynomialsPR.<w,z> = PolynomialRing(ZZ)pol1 = pol2 = 0for jj in range(nn):pol1 += monomials[jj](w*z+1,w,z) * BB[pol1_idx, jj] / monomials[jj](UU,XX,YY)pol2 += monomials[jj](w*z+1,w,z) * BB[pol2_idx, jj] / monomials[jj](UU,XX,YY)# resultantPR.<q> = PolynomialRing(ZZ)rr = pol1.resultant(pol2)# are these good polynomials?if rr.is_zero() or rr.monomials() == [1]:continueelse:print("found them, using vectors", pol1_idx, "and", pol2_idx)found_polynomials = Truebreakif found_polynomials:breakif not found_polynomials:print("no independant vectors could be found. This should very rarely happen...")return 0, 0rr = rr(q, q)# solutionssoly = rr.roots()if len(soly) == 0:print("Your prediction (delta) is too small")return 0, 0soly = soly[0][0]ss = pol1(q, soly)solx = ss.roots()[0][0]#return solx, solydef example():############################################# How To Use This Script############################################ The problem to solve (edit the following values)## the modulusN = 116518679305515263290840706715579691213922169271634579327519562902613543582623449606741546472920401997930041388553141909069487589461948798111698856100819163407893673249162209631978914843896272256274862501461321020961958367098759183487116417487922645782638510876609728886007680825340200888068103951956139343723# the public exponente = 113449247876071397911206070019495939088171696712182747502133063172021565345788627261740950665891922659340020397229619329204520999096535909867327960323598168596664323692312516466648588320607291284630435682282630745947689431909998401389566081966753438869725583665294310689820290368901166811028660086977458571233# the hypothesis on the private exponent (the theoretical maximum is 0.292)delta = .263 # this means that d < N^delta## Lattice (tweak those values)## you should tweak this (after a first run), (e.g. increment it until a solution is found)m = 5 # size of the lattice (bigger the better/slower)# you need to be a lattice master to tweak theset = int((1-2*delta) * m)  # optimization from Herrmann and MayX = 2*floor(N^delta)  # this _might_ be too muchY = floor(N^(1/2))    # correct if p, q are ~ same size## Don't touch anything below## Problem put in equationP.<x,y> = PolynomialRing(ZZ)A = int((N+1)/2)pol = 1 + x * (A + y)## Find the solutions!## Checking boundsif debug:print("=== checking values ===")print("* delta:", delta)print("* delta < 0.292", delta < 0.292)print("* size of e:", int(log(e)/log(2)))print("* size of N:", int(log(N)/log(2)))print("* m:", m, ", t:", t)# boneh_durfeeif debug:print("=== running algorithm ===")start_time = time.time()solx, soly = boneh_durfee(pol, e, m, t, X, Y)# found a solution?if solx > 0:print("=== solution found ===")if False:print("x:", solx)print("y:", soly)d = int(pol(solx, soly) / e)print("private key found:", d)else:print("=== no solution was found ===")if debug:print(("=== %s seconds ===" % (time.time() - start_time)))if __name__ == "__main__":example()

计算得到d
在这里插入图片描述

d = 663822343397699728953336968317794118491145998032244266550694156830036498673227937

最后RSA解密得到flag

#sage
c = 6838759631922176040297411386959306230064807618456930982742841698524622016849807235726065272136043603027166249075560058232683230155346614429566511309977857815138004298815137913729662337535371277019856193898546849896085411001528569293727010020290576888205244471943227253000727727343731590226737192613447347860
d = 663822343397699728953336968317794118491145998032244266550694156830036498673227937
n = 116518679305515263290840706715579691213922169271634579327519562902613543582623449606741546472920401997930041388553141909069487589461948798111698856100819163407893673249162209631978914843896272256274862501461321020961958367098759183487116417487922645782638510876609728886007680825340200888068103951956139343723
m = pow(c,d,n)
flag = bytes.fromhex(hex(m)[2:])
print(flag)
#DASCTF{6f4fadce-5378-d17f-3c2d-2e064db4af19}

决赛

JIGE

题目:

from gmpy2 import *
from hashlib import md5
from Crypto.Util.number import *
from sympy import *message=XXXXXX
flag = 'DASCTF{'+md5(message).hexdigest()+'}'
p = getPrime(256)
q = getPrime(256)
assert p > q
n = p * q
e = 0x10001  #65537
m = bytes_to_long(message)
c = pow(m, e, n)N = pow(p, 11) * q
d1 = getPrime(2000)
d2 = nextprime(d1 + getPrime(1000))
e1 = invert(d1, (pow(p, 10) * (p - 1) * (q - 1)))
e2 = invert(d2, (pow(p, 10) * (p - 1) * (q - 1)))print(f'c = {c}')
print(f'N = {N}')
print(f'e1 = {e1}')
print(f'e2 = {e2}')'''
c = 1206807362850301500412872994631699583002892289904471476523412128137773618173466272359196256671175708216503443050872032061782739223138420055283507423416014
N = 2769972268494457422626756881035680365791374852650158574600757210295514312723202376005992652087072745127197622954236101990451854162917559723722518981897097628959272185981219794883530767584841881112435651621934537571083225349949311621207409183741363444346000402562578450456645711882560128619242711698327278980081266684521150227771637075686195050487818614035674633610096137625035790732645845723462391311298302637686542232835581871746884130013070996968184596449672622781116306181302392813217024411730226953994648038878074679828551669837254152265441513617958229372943240214088399450834487541147274643124286983672414825675492669859487862886608989862491581277404219285561282275675102529309186029976081969486912697417132568798720377963032348920342675126756050513673101405664709184620104181654397512121633023592966498206439167017063802120497727043888826589401745202319033829767714724756122673441156732069183201569766204472097988081541
e1 = 2019789551019093124420297272384567741634310853673511749178611164072776295834811119450621861426097251426338761387400947669712980885171825246712129400923345045714062211913328737569990247227840399725205366257333392335095407072561983345874628219982166479392648454069496646733709717240335264301129096508037181465890164627276692696540046415077712807666335629672257696160380799064676194674815656129599632459744438651570247278542393673849808278202966914757001771181720554604666343205509941102540930522715083963211556704973593626830060515529201025992233193710032293801887064920491994892731059564016729184073592209700547810374523193198684464611594086849851216947777536116800375704509948170375971236541467019409313469504630988967011023280553412399918851721362010464793913169072750314771104456079550196999871385309352503595586614818585704007635869697001268017638044593755012233245211072647051603150602669710674109645174749520576295708163
e2 = 1583703592049684873685114339953437401553059969077370065722292597953883761416746559834892164581234164438330080827740800363198430396478731634782581595240544469072569584848085012992026166904750154014378216852052182115039653650262042887676171319128137818446568464062868113062233139620367603439600244722942659267734053620937005194939432606278744697609503707934576549002757520737074102321078418822923889399221127593632747782118004212766847803779185975309956970980280169387201657554918144244843463689062591309308003163435148432749203807727111886042271473627935482161154494976464303547129663586810973936239964669196142557977332701367619795730332662446023712262922190841226239360097490311533265953167562594634954870494720064733019963379137130620318351648747992348207245430288065933286523588168735037017481803349125024025183996822657547245651094947702268545834292593852409172743667084611813423926836813703374530071303810930647531379459
'''

考察论文New attacks on RSA with Moduli N = p^rq
在这里插入图片描述
根据论文,可以构建如下多项式
e 1 e 2 ( d 1 − d 2 ) ≡ e 2 − e 1 m o d ϕ ( n ) e_1e_2(d_1-d_2) \equiv e_2-e_1 \space mod \space \phi(n) e1e2(d1d2)e2e1 mod ϕ(n)
因为 ϕ ( n ) = p r − 1 ( p − 1 ) ( q − 1 ) \phi(n) = p^{r-1}(p-1)(q-1) ϕ(n)=pr1(p1)(q1),所以上式子可以变为
e 1 e 2 x − ( e 2 − e 1 ) ≡ 0 m o d p r − 1 e_1e_2x-(e_2-e_1) \equiv0 \space mod \space p^{r-1} e1e2x(e2e1)0 mod pr1
∣ d 1 − d 2 ∣ < n r ( r − 1 ) ( r + 1 ) 2 |d_1-d_2|<n^\frac{r(r-1)}{(r+1)^2} d1d2<n(r+1)2r(r1)时,在多项式时间内可解
copper出x,也就是d1-d2
计算 g c d ( e 1 e 2 x − ( e 2 − e 1 ) , n ) = g c d ( y × p r − 1 ( p − 1 ) ( q − 1 ) , p r q ) = g gcd(e_1e_2x-(e_2-e_1),n) = gcd(y\times p^{r-1}(p-1)(q-1),p^rq) = g gcd(e1e2x(e2e1),n)=gcd(y×pr1(p1)(q1),prq)=g
p的值按如下情况取
w h e n g = p r − 1 , p = g 1 r − 1 ( 1 ) when \space g = p^{r-1},p = g^{\frac{1}{r-1}} \hspace {2cm} (1) when g=pr1,p=gr11(1)
w h e n g = p r , p = g 1 r ( 2 ) when \space g = p^{r},p = g^{\frac{1}{r}} \hspace {2.5cm} (2) when g=pr,p=gr1(2)
w h e n g = p r − 1 q , p = n g ( 3 ) when \space g = p^{r-1}q,p = \frac{n}{g} \hspace {2.1cm} (3) when g=pr1q,p=gn(3)

在本题中,我们得到的g为2560bit,p为256bit,那么 g = p 11 − 1 = p 10 g = p^{11-1} = p^{10} g=p111=p10
直接开10次方得到p,进而q = n//p^11,最后RSA解密再计算明文的md5摘要即可获得flag
exp:

#sage  
import gmpy2
from hashlib import *c = 1206807362850301500412872994631699583002892289904471476523412128137773618173466272359196256671175708216503443050872032061782739223138420055283507423416014
n = 2769972268494457422626756881035680365791374852650158574600757210295514312723202376005992652087072745127197622954236101990451854162917559723722518981897097628959272185981219794883530767584841881112435651621934537571083225349949311621207409183741363444346000402562578450456645711882560128619242711698327278980081266684521150227771637075686195050487818614035674633610096137625035790732645845723462391311298302637686542232835581871746884130013070996968184596449672622781116306181302392813217024411730226953994648038878074679828551669837254152265441513617958229372943240214088399450834487541147274643124286983672414825675492669859487862886608989862491581277404219285561282275675102529309186029976081969486912697417132568798720377963032348920342675126756050513673101405664709184620104181654397512121633023592966498206439167017063802120497727043888826589401745202319033829767714724756122673441156732069183201569766204472097988081541
e1 = 2019789551019093124420297272384567741634310853673511749178611164072776295834811119450621861426097251426338761387400947669712980885171825246712129400923345045714062211913328737569990247227840399725205366257333392335095407072561983345874628219982166479392648454069496646733709717240335264301129096508037181465890164627276692696540046415077712807666335629672257696160380799064676194674815656129599632459744438651570247278542393673849808278202966914757001771181720554604666343205509941102540930522715083963211556704973593626830060515529201025992233193710032293801887064920491994892731059564016729184073592209700547810374523193198684464611594086849851216947777536116800375704509948170375971236541467019409313469504630988967011023280553412399918851721362010464793913169072750314771104456079550196999871385309352503595586614818585704007635869697001268017638044593755012233245211072647051603150602669710674109645174749520576295708163
e2 = 1583703592049684873685114339953437401553059969077370065722292597953883761416746559834892164581234164438330080827740800363198430396478731634782581595240544469072569584848085012992026166904750154014378216852052182115039653650262042887676171319128137818446568464062868113062233139620367603439600244722942659267734053620937005194939432606278744697609503707934576549002757520737074102321078418822923889399221127593632747782118004212766847803779185975309956970980280169387201657554918144244843463689062591309308003163435148432749203807727111886042271473627935482161154494976464303547129663586810973936239964669196142557977332701367619795730332662446023712262922190841226239360097490311533265953167562594634954870494720064733019963379137130620318351648747992348207245430288065933286523588168735037017481803349125024025183996822657547245651094947702268545834292593852409172743667084611813423926836813703374530071303810930647531379459
e = 65537
a = e1 * e2
b = (e2 - e1)
R.<x> = PolynomialRing(Zmod(n))
f = a*x - b
f = f.monic()
res =  f.small_roots(2^2000,beta = 0.4)	
ans = int(res[0])
tmp = GCD(a*ans - b,n)
p  = gmpy2.iroot(tmp,10)[0]
q = n//(p**11)
phi = (p-1)*(q-1)
d = inverse_mod(e,phi)
m = pow(c,d,p*q)
plain = bytes.fromhex(hex(m)[2:])
#YOU MUST BE A XIAOHEIZI
flag = 'DASCTF{'+md5(plain).hexdigest()+'}'
print(flag)
#DASCTF{4ed94d288633e880f9d8a53039247805}

【世上伤病千百种,情伤病入膏肓,心病无药可救。】

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/584071.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

全新研发体系助力产品落地 传音控股成科技出海代表

一直以来&#xff0c;手机都被认为是所有新技术的最佳应用载体&#xff0c;尤其是在数字化、智能化时代&#xff0c;技术创新能力决定着手机厂商的生存与发展。 作为全球新兴市场手机行业的中坚力量之一&#xff0c;传音控股始终坚持以技术创新为驱动&#xff0c;围绕用户需求…

最大后验概率法

在贝叶斯统计中&#xff0c;最大后验概率&#xff08;maximum a posteriori, MAP&#xff09;估计是对后验分布的模的估计。MAP可根据经验数据获得未观测量的点估计。它与最大似然&#xff08;ML&#xff09;估计方法密切相关&#xff0c;但采用了一个包含先验分布的增强优化目…

【数据结构】七、图

一、概念 图&#xff1a;记为G(V,E) 有向图&#xff1a;每条边都有方向 无向图&#xff1a;边无方向 完全图&#xff1a;每个顶点都与剩下的所有顶点相连 完全有向图有n(n-1)条边&#xff1b;完全无向图有n(n-1)/2条边 带权图&#xff1a;边上标有数值的图 连通图&#…

使用 pytest 相关特性重构 appium_helloworld

一、前置说明 在 pytest 基础讲解 章节,介绍了 pytest 的特性和基本用法,现在我们可以使用 pytest 的一些机制,来重构 appium_helloworld 。 appium_helloworld 链接: 编写第一个APP自动化脚本 appium_helloworld ,将脚本跑起来 代码目录结构: pytest.ini 设置: [pyt…

Goby 漏洞发布| QNAP NAS authLogin.cgi 命令执行漏洞(CVE-2017-6361)

漏洞名称&#xff1a;QNAP NAS authLogin.cgi 命令执行漏洞&#xff08;CVE-2017-6361&#xff09; English Name&#xff1a;QNAP NAS authLogin.cgi command execution vulnerability (CVE-2017-6361) CVSS core: 9.8 影响资产数&#xff1a; 2637547 漏洞描述&#xff1…

pd工具箱 Parallels Toolbox

Parallels Toolbox是一款适用于Mac和PC的强大工具箱软件&#xff0c;集成了多种实用的工具和功能&#xff0c;旨在帮助用户提高工作效率和生产力。它提供了文件管理、截图、音频视频处理、清理工具等众多工具&#xff0c;使用户能够方便快捷地完成各种常见任务。Parallels Tool…

“踩坑”经验分享:Swift语言落地实践

作者 | 路涛、艳红 导读 Swift 是一种适用于iOS/macOS应用开发、服务器端的编程语言。自2014年苹果发布 Swift 语言以来&#xff0c;Swift5 实现了 ABI 稳定性、Module 稳定性和Library Evolution&#xff0c;与Objective-C&#xff08;下文简称“OC”&#xff09;相比&#xf…

PLC电机正反转控制程序示例

一、对于三相电源线的电动机&#xff0c;反转只需要任意的交换两根电源线即可 二、例如接通KM1对应正转的话&#xff0c;则接通KM2则对应反转 三、电机正转按钮及其对应的地址 四、电机反转按钮及其对应的地址 五、电机停止按钮及其对应的地址 六、正转的接触器线圈 七、反转的…

在VMware上安装Ubuntu:详细教程

关于VMware和Ubuntu VMware VMware 是一家全球领先的虚拟化和云基础架构解决方案提供商。它提供了多个产品和技术&#xff0c;用于管理和优化计算机资源的使用&#xff0c;实现虚拟化、云计算和数据中心自动化等功能。 以下是 VMware 公司提供的一些主要产品&#xff1a; V…

决心解开软光栅的心结

最近几天离职在家,是的,还没回老家.白天周中的时候写这个软光栅化渲染器.包括在上班的最后项目大家都不干活的时候我已经开始写了.到今天上午总算是有的看了.细节还差很多,下午把透视校正插值加上,下午加不完就元旦假期之后再说(元旦我要写pbrt的读书笔记).还有摄像机裁剪,背面…

《掌握需求管理,助你打造火爆产品》

作为一名产品经理&#xff0c;需求管理是你工作中最重要的部分之一。一个好的需求管理系统可以帮助你确保你的产品始终符合客户的需求和期望&#xff0c;并确保项目能够按时交付。下面是一些建议&#xff0c;帮助你成为一个更好的需求管理者。 建立清晰的需求管理流程 一个好的…

一文详解Cookie以及Selenium自动获取Cookie

前言 以后数据获取途径以及数据资产绝对会是未来核心要素生产工具和资源之一&#xff0c;每个大模型都离不开更加精细化数据的二次喂养训练。不过现在来看收集大量数据的方法还是有很多途径的&#xff0c;有些垂直领域的专业数据是很难获取得到的&#xff0c;靠人力去搜寻相当…

Arduino stm32 USB CDC虚拟串口使用示例

Arduino stm32 USB CDC虚拟串口使用示例 &#x1f4cd;相关篇《STM32F401RCT6基于Arduino框架点灯程序》&#x1f516;本开发环境基于VSCode PIO&#x1f33f;验证芯片&#xff1a;STM32F401RC⌛USB CDC引脚&#xff1a; PA11、 PA12&#x1f527;platformio.ini配置信息&…

【滑动窗口】【二分查找】C++算法:和至少为 K 的最短子数组

作者推荐 动态规划 多源路径 字典树 LeetCode2977:转换字符串的最小成本 本题涉及知识点 滑动窗口 有序向量 二分查找 LeetCode862:和至少为 K 的最短子数组 给你一个整数数组 nums 和一个整数 k &#xff0c;找出 nums 中和至少为 k 的 最短非空子数组 &#xff0c;并返回…

HCIA-Datacom题库(自己整理分类的)——ARP协议【完】

一、单选 1.ARP 属于哪一层协议&#xff1f; 数据链路层 网络层 物理层 传输层 2.ARP请求是____发送的 点播 广播 组播 单播 关于ARP报文的说法错误的是? ARP请求报文是广播发送的 ARP报文不能被转发到其他广播域 ARP应答报文是单播方发送的 任何链路层协议都需…

开放式蓝牙耳机学生党适合买哪些?平价好用的开放式耳机推荐

对于学生党来说&#xff0c;想要买一款既平价又好用的开放式蓝牙耳机&#xff0c;确实需要仔细挑选&#xff0c;那啥是开放式耳机呢&#xff1f;简单来说&#xff0c;开放式耳机就是那种不把耳朵全部封闭起来的耳机&#xff0c;声音可以流通&#xff0c;听起来更自然、舒适&…

LVM与磁盘配额

文章目录 LVM与磁盘配额一、LVM概述1、LVM概述2、LVM机制的基本概念2.1 PV&#xff08;Physical Volume&#xff0c;物理卷&#xff09;2.2 VG&#xff08;Logical Volume&#xff0c;逻辑卷&#xff09;2.3 LV&#xff08;Logical Volume&#xff0c;逻辑卷&#xff09; 二、L…

Android移动端超分辨率调研(未完成 目前自用)

作用 图片加载是目前几乎所有的APP都具备的基础能力&#xff0c;在节省服务商的传输带宽之外&#xff0c;也可以降低用户消费端流量的消耗&#xff0c;提升用户的加载速度。帮助每一个产品用更低的成本达到更好的图片加载效果。 效果 另一方面 用TensorFlow实现的图像极度压…

Nginx配置反向代理

代理通常用于在多个服务器之间分配负载&#xff0c;无缝显示来自不同网站的内容&#xff0c;或通过 HTTP 以外的协议将处理请求传递给应用程序服务器。 将请求传递到代理服务器 当 NGINX 代理请求时&#xff0c;它会将请求发送到指定的代理服务器&#xff0c;获取响应&#x…

大语言模型发展史

前言 2023年可谓是生成式AI元年&#xff0c;大语言模型从崭露头角到锋芒毕露&#xff0c;已然成为人工智能领域的关键推动力。这一创新性的技术不仅在自然语言处理领域崭露头角&#xff0c;更深刻地改变了我们对人机交互、智能助手和信息处理的认知。那么大语言模型的发展历程…