经典目标检测YOLO系列(一)复现YOLOV1(2)反解边界框及后处理

经典目标检测YOLO系列(一)复现YOLOV1(2)反解边界框及后处理

在上个博客,我们提出了新的YOLOV1架构,这次我们解决前向推理过程中的两个问题。
经典目标检测YOLO系列(一)YOLOV1的复现(1)总体架构

1、边界框的计算

1.1 反解边界框公式的改变

1.1.1 原版YOLOV1的中心点量化误差的计算公式

如下图,目标狗的中心点所在网格为黄色部分,中心点为图中红点。

在原版的YOLOV1中,我们发现中心点【红点】距离黄色网格左上角处【坐标为(1, 4)】是有差距的,这其实就是由于降采样带来的量化误差,因此,我们只要获得了这个量化误差,就能获得中心点的准确坐标了。

在这里插入图片描述

YOLOv1原版中计算这个量化误差的过程如下:

在这里插入图片描述

在上图中计算出grid_x,grid_y的坐标,我们可以用矩阵进行表示,我们不妨称这个矩阵为G,矩阵的值如下

[[0., 0.],[1., 0.],[2., 0.],[3., 0.],[4., 0.],[5., 0.],[6., 0.],[0., 1.],[1., 1.],[2., 1.],[3., 1.],[4., 1.],[5., 1.],[6., 1.],[0., 2.],[1., 2.],[2., 2.],[3., 2.],[4., 2.],[5., 2.],[6., 2.],[0., 3.],[1., 3.],[2., 3.],[3., 3.],[4., 3.],[5., 3.],[6., 3.],[0., 4.],[1., 4.],[2., 4.],[3., 4.],[4., 4.],[5., 4.],[6., 4.],[0., 5.],[1., 5.],[2., 5.],[3., 5.],[4., 5.],[5., 5.],[6., 5.],[0., 6.],[1., 6.],[2., 6.],[3., 6.],[4., 6.],[5., 6.],[6., 6.]
]

计算出来的量化误差,其实就是中心点【红点】距离【黄色网格左上角点】的X轴和Y轴方向的偏移量。

在这里插入图片描述

1.1.2 原版YOLOV1反解边界框的公式

YOLOv1原版中根据预测值反解边界框的过程如下:
c e n t e r x = ( g r i d x + c x ) × s t r i d e c e n t e r y = ( g r i d y + c y ) × s t r i d e w = w p r e d × w i m a g e h = h p r e d × h i m a g e center_x = (grid_x + c_x)×stride \\ center_y = (grid_y + c_y)×stride \\ w = w_{pred} × w_{image} \\ h = h_{pred} × h_{image} centerx=(gridx+cx)×stridecentery=(gridy+cy)×stridew=wpred×wimageh=hpred×himage

1.1.3 改进YOLOV1

在原版的YOLOv1中,bbox预测主要包括目标中心点的偏移量 cx,cy 和归一化的边界框的宽高 w,h ,但是不论是哪个量,原版的YOLOv1均使用线性函数来输出,未加任何约束限制,很明显会有以下两点问题:

  • 由于偏移量cx,cy是介于01范围内的数,因此,其本身就是有上下界的,而线性输出并没有上下界,这就容易导致在学习的初期,网络可能预测的值非常大,导致bbox分支学习不稳定。

  • 边界框的宽高显然是个非负数,而线性输出不能保证这一点,这也可能造成训练过程中的不稳定,一些输出一些不合理的数值(比如负数)。

因此对于这两个问题,我们进行改进:

  • 第一个问题:假设模型的输出为 tx,ty ,我们使用sigmoid函数将其映射到0~1的范围内,保证网络的输出值是合理的,使得训练更加稳定。

  • 第二个问题:采用log-exp方法来处理。

    • YOLOv1所要预测的不是归一化的边界框宽高,而是经过log函数压缩后的宽高。
    • 由于log函数的指数级的压缩特性,在一定程度上可以拉近大目标和小目标之间的尺寸量级,因此,对于平衡不同尺度的目标的检测问题还能起到一定的缓解作用。
    • 为了更好地学习这一标签,会将目标框的坐标先映射到网格的尺度上:ws=w/stride,hs=h/stride ,然后再做log处理

    t w = l o g ( w s ) t h = l o g ( h s ) t_w = log(w_s) \\ t_h = log(h_s) tw=log(ws)th=log(hs)

    • 在推理阶段,使用exp函数即可将预测恢复到正常的尺度上。
      w = e ( t w ) ∗ s t r i d e h = e ( t h ) ∗ s t r i d e w = e^{(t_w)}*stride \\ h = e^{(t_h)}*stride w=e(tw)strideh=e(th)stride

因此,改进后根据预测值反解边界框的公式如下:
c e n t e r x = ( g r i d x + c x ) × s t r i d e c e n t e r y = ( g r i d y + c y ) × s t r i d e w = e ( t w ) ∗ s t r i d e h = e ( t h ) ∗ s t r i d e center_x = (grid_x + c_x)×stride \\ center_y = (grid_y + c_y)×stride \\ w = e^{(t_w)}*stride \\ h = e^{(t_h)}*stride centerx=(gridx+cx)×stridecentery=(gridy+cy)×stridew=e(tw)strideh=e(th)stride

1.2 反解边界框代码实现

前向推理过程中,我们通过yoloV1网络得到置信度、分类以及回归的预测值。然后,对其进行一些调整,方便后续处理。

    # RT-ODLab/models/detectors/yolov1/yolov1.py  @torch.no_grad()def inference(self, x):# 测试阶段的前向推理代码# 主干网络feat = self.backbone(x)# 颈部网络feat = self.neck(feat)# 检测头cls_feat, reg_feat = self.head(feat)# 预测层obj_pred = self.obj_pred(cls_feat)cls_pred = self.cls_pred(cls_feat)reg_pred = self.reg_pred(reg_feat)fmp_size = obj_pred.shape[-2:]# 对 pred 的size做一些view调整,便于后续的处理# [B, C, H, W] -> [B, H, W, C] -> [B, H*W, C]obj_pred = obj_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)cls_pred = cls_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)reg_pred = reg_pred.permute(0, 2, 3, 1).contiguous().flatten(1, 2)# 测试时,笔者默认batch是1,# 因此,我们不需要用batch这个维度,用[0]将其取走。obj_pred = obj_pred[0]       # [H*W, 1]cls_pred = cls_pred[0]       # [H*W, NC]reg_pred = reg_pred[0]       # [H*W, 4]# 每个边界框的得分scores = torch.sqrt(obj_pred.sigmoid() * cls_pred.sigmoid())# 解算边界框, 并归一化边界框: [H*W, 4]bboxes = self.decode_boxes(reg_pred, fmp_size)......

然后,我们通过回归参数,反解边界框。要想反解边界框,首先,我们需要一个由grid_x,grid_y组成的矩阵G。

    # RT-ODLab/models/detectors/yolov1/yolov1.py  def create_grid(self, fmp_size):""" 用于生成G矩阵,其中每个元素都是特征图上的像素坐标。"""# 特征图的宽和高ws, hs = fmp_size# 生成网格的x坐标和y坐标grid_y, grid_x = torch.meshgrid([torch.arange(hs), torch.arange(ws)])# 将xy两部分的坐标拼起来:[H, W, 2]grid_xy = torch.stack([grid_x, grid_y], dim=-1).float()# [H, W, 2] -> [HW, 2] -> [HW, 2]grid_xy = grid_xy.view(-1, 2).to(self.device)return grid_xy

不了解torch.meshgrid()函数的可以参考:

np.meshgrid()和torch.meshgrid()函数解析

然后,我们按照改进后的公式,得到边界框中心坐标以及宽高,最后转换为(xmin,ymin,xmax,ymax)的格式。

    # RT-ODLab/models/detectors/yolov1/yolov1.py  def decode_boxes(self, pred, fmp_size):"""将txtytwth转换为常用的x1y1x2y2形式。pred:回归预测参数fmp_size:特征图宽和高"""# 生成网格坐标矩阵grid_cell = self.create_grid(fmp_size)# 计算预测边界框的中心点坐标和宽高pred_ctr = (torch.sigmoid(pred[..., :2]) + grid_cell) * self.stridepred_wh = torch.exp(pred[..., 2:]) * self.stride# 将所有bbox的中心带你坐标和宽高换算成x1y1x2y2形式pred_x1y1 = pred_ctr - pred_wh * 0.5pred_x2y2 = pred_ctr + pred_wh * 0.5pred_box = torch.cat([pred_x1y1, pred_x2y2], dim=-1)return pred_box

2、后处理

反解边界框后,我们会遇到两个问题:

  • 一些边界框的score过低,我们需要剔除。
  • 边界框有很多冗余,即多个box检测到了同一个物体,而我们对于每一个物体只需要一个框就够了。因此,我们有必要去剔除掉多余的结果(通过非极大值抑制nms)。

2.1 非极大值抑制

非极大值抑制的步骤:

  1. 首先挑选出得分score最高的框;

  2. 依次计算其他框与这个得分最高的框的 IoU ,超过给定 IoU 阈值的框舍掉。

  3. 对每一类别都进行以上的操作,直到无框可剔除为止。

非极大值抑制的python实现:

def nms(bboxes, scores):# 1、将xmin,ymin,xmax,ymax拿出xmin = bboxes[:, 0]ymin = bboxes[:, 1]xmax = bboxes[:, 2]ymax = bboxes[:, 3]# 2、置信度从大到小的下标order = scores.argsort()[::-1]print(order)# 3、每个bbox的面积area = (ymax - ymin) * (xmax - xmin)print(area)keep = [] # 保存框的索引while order.size > 0:i = order[0]keep.append(i)# 4、求当前置信度最大的bbox与其他bbox的iou# 4.1 计算交集的坐上角的点 和  右下角的点x1 = np.maximum(xmin[i], xmin[order[1:]])y1 = np.maximum(ymin[i], ymin[order[1:]])x2 = np.minimum(xmax[i], xmax[order[1:]])y2 = np.minimum(ymax[i], ymax[order[1:]])# 4.2 计算交集的宽和高w = np.maximum(1e-10, x2 - x1)h = np.maximum(1e-10, y2 - y1)# 4.3 计算iouinter = w * hiou = inter / (area[i] + area[order[1:]]  - inter)print('iou = ', iou)# 滤除超过nms阈值的检测框nms_thresh = 0.4inds = np.where(iou <= nms_thresh)[0]print(inds + 1)order = order[inds + 1]return keepif __name__ == '__main__':bboxes = np.asarray([[1, 1, 3, 3],[1, 1, 4, 4],[0, 0, 1.9, 1.9],[0, 0, 2, 2],]) * 100scores = np.asarray([0.6, 0.7, 0.9, 0.1])keep = nms(bboxes, scores)print(keep)print(bboxes[[2, 1]])
[2, 1]
[[  0.   0. 190. 190.][100. 100. 400. 400.]]

2.2 后处理代码实现

了解非极大值后,我们就可以进行后处理了。

    # RT-ODLab/models/detectors/yolov1/yolov1.py    def postprocess(self, bboxes, scores):"""后处理代码,包括阈值筛选和非极大值抑制1、滤掉低得分(边界框的score低于给定的阈值)的预测边界框;2、滤掉那些针对同一目标的冗余检测。Input:bboxes: [HxW, 4]scores: [HxW, num_classes]Output:bboxes: [N, 4]score:  [N,]labels: [N,]"""# 获取最大分数labels = np.argmax(scores, axis=1)scores = scores[(np.arange(scores.shape[0]), labels)]# threshold# 1、滤掉低得分(边界框的score低于给定的阈值)的预测边界框;keep = np.where(scores >= self.conf_thresh)bboxes = bboxes[keep]scores = scores[keep]labels = labels[keep]# nms# 2、滤掉那些针对同一目标的冗余检测。scores, labels, bboxes = multiclass_nms(scores, labels, bboxes, self.nms_thresh, self.num_classes, self.nms_class_agnostic)return bboxes, scores, labels
# RT-ODLab/utils/misc.py# ---------------------------- NMS ----------------------------
## basic NMS
def nms(bboxes, scores, nms_thresh):""""Pure Python NMS."""x1 = bboxes[:, 0]  #xminy1 = bboxes[:, 1]  #yminx2 = bboxes[:, 2]  #xmaxy2 = bboxes[:, 3]  #ymaxareas = (x2 - x1) * (y2 - y1)order = scores.argsort()[::-1]keep = []while order.size > 0:i = order[0]keep.append(i)# compute iouxx1 = np.maximum(x1[i], x1[order[1:]])yy1 = np.maximum(y1[i], y1[order[1:]])xx2 = np.minimum(x2[i], x2[order[1:]])yy2 = np.minimum(y2[i], y2[order[1:]])w = np.maximum(1e-10, xx2 - xx1)h = np.maximum(1e-10, yy2 - yy1)inter = w * hiou = inter / (areas[i] + areas[order[1:]] - inter + 1e-14)#reserve all the boundingbox whose ovr less than threshinds = np.where(iou <= nms_thresh)[0]order = order[inds + 1]return keep## class-agnostic NMS
def multiclass_nms_class_agnostic(scores, labels, bboxes, nms_thresh):# nms# 在所有的检测结果上执行的,不会考虑类别的差异keep = nms(bboxes, scores, nms_thresh)scores = scores[keep]labels = labels[keep]bboxes = bboxes[keep]return scores, labels, bboxes## class-aware NMS 
def multiclass_nms_class_aware(scores, labels, bboxes, nms_thresh, num_classes):# nms# 逐类别地去做NMS操作,不同类别之间的检测不会相互影响keep = np.zeros(len(bboxes), dtype=np.int32)for i in range(num_classes):inds = np.where(labels == i)[0]if len(inds) == 0:continuec_bboxes = bboxes[inds]c_scores = scores[inds]c_keep = nms(c_bboxes, c_scores, nms_thresh)keep[inds[c_keep]] = 1keep = np.where(keep > 0)scores = scores[keep]labels = labels[keep]bboxes = bboxes[keep]return scores, labels, bboxes## multi-class NMS 
def multiclass_nms(scores, labels, bboxes, nms_thresh, num_classes, class_agnostic=False):if class_agnostic:return multiclass_nms_class_agnostic(scores, labels, bboxes, nms_thresh)else:return multiclass_nms_class_aware(scores, labels, bboxes, nms_thresh, num_classes)

如此,yolov1的推理过程就已经介绍完毕。

接下来,在训练过程中,我们需要改进损失函数,训练过程中,如何确定正负样本呢?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/583109.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MFC随对话框大小改变同时改变控件大小

先看一下效果; 初始; 窗口变大,控件也变大; 二个也可以; 窗口变大,控件变大; 默认生成的对话框没有WM_SIZE消息的处理程序;打开类向导,选中WM_SIZE消息,对CxxxDlg类添加该消息的处理程序;默认生成的函数名是OnSize; 添加了以后代码中会有三处变化; 在对话框类的…

call、apply、bind应用题型

这道题&#xff0c;考察的是修改this指向&#xff0c;延申到call&#xff0c;apply和bind的作用和区别。 <!DOCTYPE html> <html><head><meta charset"UTF-8"><style>/* 填写样式 */</style> </head><body><!-- …

连接GaussDB(DWS)报错:Invalid or unsupported by client SCRAM mechanisms

用postgres方式连接GaussDB(DWS)报错&#xff1a;Invalid or unsupported by client SCRAM mechanisms 报错内容 [2023-12-27 21:43:35] Invalid or unsupported by client SCRAM mechanisms org.postgresql.util.PSQLException: Invalid or unsupported by client SCRAM mec…

MySQL进阶之(一)逻辑架构

一、逻辑架构 1.1 逻辑架构剖析1.1.1 连接层1.1.2 服务层01、基础服务组件02、SQL Interface&#xff1a;SQL 接口03、Parser&#xff1a;解析器04、Optimizer&#xff1a;查询优化器05、Caches & Buffers&#xff1a; 查询缓存组件 1.1.3 引擎层1.1.4 存储层1.1.5 总结 1.…

GoLand for mac 2023.3.2 Go语言开发集成环境

GoLand 是 JetBrains 公司开发的一款专业的 Go 语言集成开发环境&#xff08;IDE&#xff09;&#xff0c;它提供了许多强大的功能来提高 Go 语言开发者的生产力和代码质量。 一、概述 GoLand 是基于 IntelliJ 平台构建的&#xff0c;继承了 IntelliJ IDEA 的强大功能和稳定性…

【2023】通过docker安装hadoop以及常见报错

&#x1f4bb;目录 1、准备2、安装镜像2.1、创建centos-ssh的镜像2.2、创建hadoop的镜像 3、配置ssh网络3.1、搭建同一网段的网络3.2、配置host实现互相之间可以免密登陆3.3、查看是否成功 4、安装配置Hadoop4.1、添加存储文件夹4.2、添加指定配置4.3、同步数据 5、测试启动5.1…

使用自带密钥 (BYOK) 的Azure信息保护云退出

上篇我们讲了使用Microsoft托管密钥的Azure信息保护云退出&#xff0c;本文我们将介绍使用自带密钥 (BYOK) 的Azure信息保护云退出。 自带密钥 (BYOK) 由客户在 nCipher HSM 中创建&#xff0c;并安全地传输到基于 HSM 的 Azure Key Vault&#xff0c;供 AIP 使用。 由于 Micro…

SeaTunnel同步PostgreSQL数据至ClickHouse(1)

ClickHouse简介 ClickHouse最初是为Yandex.Metrica世界第二大Web分析平台而开发的。多年来一直作为该系统的核心组件被该系统持续使用着。目前为止&#xff0c;该系统在ClickHouse中有超过13万亿条记录&#xff0c;并且每天超过200多亿个事件被处理。它允许直接从原始数据中动…

基于element ui封装table组件

效果图&#xff1a; 1.封装表格代码如下 <template> <div><div class"TableList"><el-tablev-loading"loading"selection-change"selectionChange"class"table":data"tableData":border"hasBorde…

【2023年中国高校大数据挑战赛 】赛题 B DNA 存储中的序列聚类与比对 Python实现

【2023年中国高校大数据挑战赛 】赛题 B DNA 存储中的序列聚类与比对 Python实现 1 题目 赛题 B DNA 存储中的序列聚类与比对 近年来&#xff0c;随着新互联网设备的大量涌入和对其服务需求的指数级增长&#xff0c;越来越多的数据信息被产生与收集。预计到 2021 年&#xf…

如何手动升级Chrome插件/Chrome扩展程序?

Chrome 浏览器的插件&#xff08;也称为扩展&#xff09;通常会自动更新到最新版本。这是因为 Chrome 会定期检查并下载来自 Chrome 网上应用店的扩展更新。然而&#xff0c;如果你需要手动更新扩展&#xff0c;可以按照以下步骤操作&#xff1a; 打开 Chrome 浏览器。点击浏览…

.Net FrameWork总结

.Net FrameWork总结 介绍.Net公共语言运行库CLI的组成.NET Framework的主要组成.NET Framework的优点CLR在运行期管理程序的执行&#xff0c;包括以下内容CLR提供的服务FCL的组成 或 服务&#xff08;这个其实就是我们编码时常用到的类库&#xff09;&#xff1a;&#xff08;下…

408数据结构常考算法基础训练

408相关&#xff1a; 408数据结构错题知识点拾遗 408数据结构常考算法基础训练 408计算机组成原理错题知识点拾遗408操作系统错题知识点拾遗等待完善408计算机网络错题知识点拾遗 408计算机网络各层协议简记等待完善 该训练营为蓝蓝考研&#xff08;蓝颜知己&#xff09;的算…

Python漂浮爱心完整代码

文章目录 环境需求完整代码详细分析环境需求 python3.11.4PyCharm Community Edition 2023.2.5pyinstaller6.2.0(可选,这个库用于打包,使程序没有python环境也可以运行,如果想发给好朋友的话需要这个库哦~)【注】 python环境搭建请见:https://want595.blog.csdn.net/arti…

【PXIE301-208】基于PXIE总线架构的Serial RapidIO总线通讯协议仿真卡

板卡概述 PXIE301-208是一款基于3U PXIE总线架构的Serial RapidIO总线通讯协议仿真卡。该板卡采用Xilinx的高性能Kintex系列FPGA作为主处理器&#xff0c;实现各个接口之间的数据互联、处理以及实时信号处理。板卡支持4路SFP光纤接口&#xff0c;支持一个PCIe x8主机接口&…

不同SqlServer版本的Jdbc驱动下载地址

不同SqlServer版本的Jdbc驱动下载地址 1.下载地址 发行说明 - JDBC Driver for SQL Server | Microsoft Learn 版本兼容性查看 支持矩阵 - JDBC Driver for SQL Server | Microsoft Learn 建议方法查看 SQL 版本兼容性 Java 和 JDBC 规格支持 2.下载驱动 下面是2008版本对应…

写一个工具类能够让所有的建筑物体检测地面并且吸附地面

直接上代码 using UnityEditor; using UnityEngine; using System.Collections.Generic; using System.IO; using OHGame; using Unity.VisualScripting;public class OHEditorTool : Editor {[MenuItem("OHGame/Tools/行动区域点落地")]private static void GetObj…

element el-table实现可进行横向拖拽滚动

【问题】表格横向太长&#xff0c;表格横向滚动条位于最底部&#xff0c;需将页面滚动至最底部才可左右拖动表格&#xff0c;用户体验感不好 【需求】基于elment的el-table组件生成的表格&#xff0c;使其可以横向拖拽滚动 【实现】灵感来源于这篇文章【Vue】表格可拖拽滚动&am…

Linux 线程概念

文章目录 前言线程的概念线程的操作操作的原理补充与说明 前言 ① 函数的具体说明被放在补充与说明部分 ② 只说些基础概念和函数使用 线程的概念 网络回答&#xff1a;Linux 线程是指在 Linux 操作系统中创建和管理的轻量级执行单元。线程是进程的一部分&#xff0c;与进程…

flutter 安卓使用高德插件黑屏

地址 https://lbs.amap.com/api/android-sdk/guide/create-project/android-studio-create-project 下面介绍的方式是Native配置 sdk&#xff0c;也就是需要手动下载到本地在引入的方式 1、添加 jar 文件&#xff1a; 将下载的地图 SDK 的 jar包复制到工程&#xff08;此处截…