Redis布隆过滤器BloomFilter

  • 👏作者简介:大家好,我是爱吃芝士的土豆倪,24届校招生Java选手,很高兴认识大家
  • 📕系列专栏:Spring源码、JUC源码、Kafka原理、分布式技术原理、数据库技术
  • 🔥如果感觉博主的文章还不错的话,请👍三连支持👍一下博主哦
  • 🍂博主正在努力完成2023计划中:源码溯源,一探究竟
  • 📝联系方式:nhs19990716,加我进群,大家一起学习,一起进步,一起对抗互联网寒冬👀

文章目录

  • Redis布隆过滤器BloomFilter
    • 经典面试题
    • 简介
    • 作用
    • 原理
      • 基本原理和数据结构
        • hash冲突导致数据不准确
      • 使用步骤
      • 布隆过滤器误判率,为什么不要删除
      • 小总结
    • 使用场景
      • 解决缓存穿透问题,和redis结合bitmap使用
      • 黑名单校验,识别垃圾邮件
    • 布隆过滤器实现步骤
      • 设计步骤
        • redis的setbit/getbit
        • setbit构建过程
        • getbit查询是否存在

Redis布隆过滤器BloomFilter

经典面试题

  • 现有50亿个电话号码,现有10个电话号码,如何要快速准确的判断这些电话号码是否已经存在?

1、通过数据库查询-------实现快速有点难。

2、数据预放到内存集合中:50亿*8字节大约40G,内存太大了。

  • 判断是否存在,布隆过滤器了解过吗?
  • 安全连接网址,全球数10亿的网址判断
  • 黑名单校验,识别垃圾邮件
  • 白名单校验,识别出合法用户进行后续处理

简介

由一个初值都为零的bit数组和多个哈希函数构成,用来快速判断集合中是否存在某个元素

在这里插入图片描述

目的减少内存占用
方式不保存数据信息,只是在内存中做一个是否存在的标记flag

本质上就是判断具体数据是否存在于一个大的集合中

布隆过滤器(英语:Bloom Filter)是 1970 年由布隆提出的。

它实际上是一个很长的二进制数组(00000000)+一系列随机hash算法映射函数,主要用于判断一个元素是否在集合中。

通常我们会遇到很多要判断一个元素是否在某个集合中的业务场景,一般想到的是将集合中所有元素保存起来,然后通过比较确定。

链表、树、哈希表等等数据结构都是这种思路。但是随着集合中元素的增加,我们需要的存储空间也会呈现线性增长,最终达到瓶颈。同时检索速度也越来越慢,上述三种结构的检索时间复杂度分别为O(n),O(logn),O(1)。这个时候,布隆过滤器(Bloom Filter)就应运而生

作用

高效地插入和查询,占用空间少,返回的结果是不确定性+不够完美

重点:一个元素如果判定结果:存在时,元素不一定存在,但是判断结果为不存在时,则一定不存在

且布隆过滤器可以添加元素,但是不能删除元素,由于涉及hashcode判断依据,删掉元素会导致误判率增加。

总结

如果存在,是可能存在

如果不存在,则一定不存在,可以保证的是,如果布隆过滤器判断一个元素不在一个集合中,那么这个元素一定不会在集合中

原理

基本原理和数据结构

布隆过滤器原理

布隆过滤器(Bloom Filter) 是一种专门用来解决去重问题的高级数据结构。

实质就是一个大型位数组和几个不同的无偏hash函数(无偏表示分布均匀)。由一个初值都为零的bit数组和多个个哈希函数构成,用来快速判断某个数据是否存在。但是跟 HyperLogLog 一样,它也一样有那么一点点不精确,也存在一定的误判概率

添加key时

使用多个hash函数对key进行hash运算得到一个整数索引值,对位数组长度进行取模运算得到一个位置,

每个hash函数都会得到一个不同的位置,将这几个位置都置1就完成了add操作。

查询key时

只要有其中一位是零就表示这个key不存在,但如果都是1,则不一定存在对应的key。

结论:有,是可能有 无,是肯定无

hash冲突导致数据不准确

当有变量被加入集合时,通过N个映射函数将这个变量映射成位图中的N个点,

把它们置为 1(假定有两个变量都通过 3 个映射函数)。

在这里插入图片描述

查询某个变量的时候我们只要看看这些点是不是都是 1, 就可以大概率知道集合中有没有它了

如果这些点,有任何一个为零则被查询变量一定不在,

如果都是 1,则被查询变量很可能存在,

为什么说是可能存在,而不是一定存在呢?那是因为映射函数本身就是散列函数,散列函数是会有碰撞的。(见上图3号坑两个对象都1)

在这里插入图片描述

哈希函数的概念是:将任意大小的输入数据转换成特定大小的输出数据的函数,转换后的数据称为哈希值或哈希编码,也叫散列值

在这里插入图片描述

如果两个散列值是不相同的(根据同一函数)那么这两个散列值的原始输入也是不相同的。

这个特性是散列函数具有确定性的结果,具有这种性质的散列函数称为单向散列函数。

散列函数的输入和输出不是唯一对应关系的,如果两个散列值相同,两个输入值很可能是相同的,但也可能不同,

这种情况称为“散列碰撞(collision)”。

用 hash表存储大数据量时,空间效率还是很低,当只有一个 hash 函数时,还很容易发生哈希碰撞。

使用步骤

布隆过滤器 本质上 是由长度为 m 的位向量或位列表(仅包含 0 或 1 位值的列表)组成,最初所有的值均设置为 0

在这里插入图片描述

当我们向布隆过滤器中添加数据时,为了尽量地址不冲突,会使用多个 hash 函数对 key 进行运算,算得一个下标索引值,然后对位数组长度进行取模运算得到一个位置,每个 hash 函数都会算得一个不同的位置。再把位数组的这几个位置都置为 1 就完成了 add 操作。

例如,我们添加一个字符串wmyskxz,对字符串进行多次hash(key) → 取模运行→ 得到坑位

在这里插入图片描述

向布隆过滤器查询某个key是否存在时,先把这个 key 通过相同的多个 hash 函数进行运算,查看对应的位置是否都为 1,

只要有一个位为零,那么说明布隆过滤器中这个 key 不存在;

如果这几个位置全都是 1,那么说明极有可能存在;

因为这些位置的 1 可能是因为其他的 key 存在导致的,也就是前面说过的hash冲突。。。。。

就比如我们在 add 了字符串wmyskxz数据之后,很明显下面1/3/5 这几个位置的 1 是因为第一次添加的 wmyskxz 而导致的;

此时我们查询一个没添加过的不存在的字符串inexistent-key,它有可能计算后坑位也是1/3/5 ,这就是误判了…笔记见最下面

在这里插入图片描述

布隆过滤器误判率,为什么不要删除

布隆过滤器的误判是指多个输入经过哈希之后在相同的bit位置1了,这样就无法判断究竟是哪个输入产生的,

因此误判的根源在于相同的 bit 位被多次映射且置 1。

这种情况也造成了布隆过滤器的删除问题,因为布隆过滤器的每一个 bit 并不是独占的,很有可能多个元素共享了某一位

如果我们直接删除这一位的话,会影响其他的元素

特性

布隆过滤器可以添加元素,但是不能删除元素。因为删掉元素会导致误判率增加。

小总结

是否存在:有,是很可能有,无,是肯定无

使用时最好不要让实际元素数量远大于初始化数量,一次给够避免扩容

当实际元素数量超过初始化数量时,应该对布隆过滤器进行重建,重新分配一个size更大的过滤器,再将所有的历史元素批量add进行

使用场景

解决缓存穿透问题,和redis结合bitmap使用

缓存穿透是什么

一般情况下,先查询缓存redis是否有该条数据,缓存中没有时,再查询数据库。

当数据库也不存在该条数据时,每次查询都要访问数据库,这就是缓存穿透。

缓存透带来的问题是,当有大量请求查询数据库不存在的数据时,就会给数据库带来压力,甚至会拖垮数据库。

可以使用布隆过滤器解决缓存穿透的问题

把已存在数据的key存在布隆过滤器中,相当于redis前面挡着一个布隆过滤器。

当有新的请求时,先到布隆过滤器中查询是否存在:

如果布隆过滤器中不存在该条数据则直接返回;

如果布隆过滤器中已存在,才去查询缓存redis,如果redis里没查询到则再查询Mysql数据库

在这里插入图片描述

黑名单校验,识别垃圾邮件

发现存在黑名单中的,就执行特定操作。比如:识别垃圾邮件,只要是邮箱在黑名单中的邮件,就识别为垃圾邮件。

假设黑名单的数量是数以亿计的,存放起来就是非常耗费存储空间的,布隆过滤器则是一个较好的解决方案。

把所有黑名单都放在布隆过滤器中,在收到邮件时,判断邮件地址是否在布隆过滤器中即可。

布隆过滤器实现步骤

结合bitmap类型手写一个简单的布隆过滤器,体会设计思想

在这里插入图片描述

设计步骤

redis的setbit/getbit

在这里插入图片描述

setbit构建过程
  • @PostConstruct初始化白名单数据
  • 计算元素的hash值
  • 通过上一步hash值算出对应的二进制数组的坑位
  • 将对应坑位的值修改为数字1,表示存在
getbit查询是否存在
  • 计算元素的hash值
  • 通过上一步hash值算出对应的二进制数组的坑位
  • 返回对应坑位的值,零表示无,1表示存在

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/582940.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unreal Engine游戏引擎的优势

在现在这个繁荣的游戏开发行业中,选择合适的游戏引擎是非常重要的。其中,Unreal Engine作为一款功能强大的游戏引擎,在业界广受赞誉。那Unreal Engine游戏引擎究竟有哪些优势,带大家简单的了解一下。 图形渲染技术 Unreal Engin…

遇见sql语句拼装报错 sql injection violation, syntax error: syntax error, expect RPAREN

在使用PostgreSql瀚高数据库时,相同的语句 select * from public.files_info fi where fi.file_size notnull 在DBever能执行,但是在spring中报错 在spring中JPA版本问题导致,不支持这种写法,会识别为sql注入风险,应…

硅像素传感器文献调研(四)

写在前面: 好喜欢这种短论文哈哈哈哈哈 感觉这篇文献已经提到了保护环的概念啊,只不过叫的是:场限制环。 1986——高压功率器件场终端横向掺杂的变化 0.摘要 对于高压平面结提出了一个简单的新概念。通过在氧化物掩模中的小开口和随后的驱…

python如何读取被压缩的图像

读取压缩的图像数据: PackBits 压缩介绍: CCITT T.3 压缩介绍: 读取压缩的图像数据: 在做图像处理的时候,平时都是使用 函数io.imread() 或者是 函数cv2.imread( ) 函数来读取图像数据,很少用PIL.Image…

Grafana Loki 组件介绍

Loki 日志系统由以下3个部分组成: Loki是主服务器,负责存储日志和处理查询。Promtail是专为loki定制的代理,负责收集日志并将其发送给 loki 。Grafana用于 UI展示。 Distributor Distributor 是客户端连接的组件,用于收集日志…

2022年全国职业院校技能大赛(高职组)“云计算”赛项赛卷①第一场次:私有云

2022年全国职业院校技能大赛(高职组) “云计算”赛项赛卷1 第一场次:私有云(30分) 目录 2022年全国职业院校技能大赛(高职组) “云计算”赛项赛卷1 第一场次:私有云&#xff0…

【Linux学习笔记】解析Linux系统内核:架构、功能、工作原理和发展趋势

操作系统是一个用来和硬件打交道并为用户程序提供一个有限服务集的低级支撑软件。一个计算机系统是一个硬件和软件的共生体,它们互相依赖,不可分割。计算机的硬件,含有外围设备、处理器、内存、硬盘和其他的电子设备组成计算机的发动机。但是…

磁盘相关知识

一、硬盘数据结构 1.扇区: 盘片被分为多个扇形区域,每个扇区存放512字节的数据(扇区越多容量越大) 存放数据的最小单位 512字节 (硬盘最小的存储单位是扇区,512 个字节,八个扇区组成一块&…

FPGA - 231227 - 5CSEMA5F31C6 - 电子万年历

TAG - F P G A 、 5 C S E M A 5 F 31 C 6 、电子万年历、 V e r i l o g FPGA、5CSEMA5F31C6、电子万年历、Verilog FPGA、5CSEMA5F31C6、电子万年历、Verilog 顶层模块 module TOP(input CLK,RST,inA,inB,inC,switch_alarm,output led,beep_led,output [41:0] dp );// 按键…

听GPT 讲Rust源代码--src/tools(29)

File: rust/src/tools/clippy/clippy_lints/src/unused_peekable.rs 在Rust源代码中,rust/src/tools/clippy/clippy_lints/src/unused_peekable.rs这个文件是Clippy工具中一个特定的Lint规则的实现文件,用于检测未使用的Peekable迭代器。 Peekable迭代器…

每日一题:LeetCode-LCR 179. 查找总价格为目标值的两个商品

每日一题系列(day 16) 前言: 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 🌈 &#x1f50e…

大厂前端面试题总结(百度、字节跳动、腾讯、小米.....),附上热乎面试经验!

先简单介绍下自己,我“平平无奇小天才”一枚,毕业于南方普通985普通学生,有幸去百度、字节面试,感觉大公司就是不一样,印象最深的是字节,所以有必要总结一下面试经验,以及面试中遇到的一些问题&…

腾讯云服务器和轻量服务器选哪个好(各自的优势区别)

腾讯云轻量服务器和云服务器CVM该怎么选?不差钱选云服务器CVM,追求性价比选择轻量应用服务器,轻量真优惠呀,活动 https://curl.qcloud.com/oRMoSucP 轻量应用服务器2核2G3M价格62元一年、2核2G4M价格118元一年,540元三…

Rust安装(Windows)

安装Rust 进入Rust官网,下载Rustup(Rust安装器和版本管理工具) 下载rustup-init.exe后双击运行,进入以下界面: 1)通过 visual studio community 安装程序快速安装 2)手动安装必备组件 3&#x…

系统和应用的分布式实时性能和健康监控,对系统中实时发生的所有事情的全面检测,开箱即用、零配置、零依赖,高度互动的 Web 仪表板中查看结果

系统和应用的分布式实时性能和健康监控,对系统中实时发生的所有事情的全面检测,开箱即用、零配置、零依赖,高度互动的 Web 仪表板中查看结果。 NetData 是一个用于系统和应用的分布式实时性能和健康监控工具。它提供了对系统中实时发生的所有事情的全面检测。你可以在高度互…

AWS SSM中切换AWS不同的profile

问题 在自己的开发笔记本上面,通过AWS SSM方式访问EC2服务,只需要通过简单的命令就可以访问EC2了,如下: aws ssm start-session --target i-xxxx12350这个命令就是利用aws命令行工具中ssm提供的会话管理能力访问ec2服务&#xf…

YOLOv5改进 | 2023主干篇 | 华为最新VanillaNet主干替换Backbone实现大幅度长点

一、本文介绍 本文给大家来的改进机制是华为最新VanillaNet网络,其是今年最新推出的主干网络,VanillaNet是一种注重极简主义和效率的神经网络架构。它的设计简单,层数较少,避免了像深度架构和自注意力这样的复杂操作(需要注意的是…

HTML使用JavaScript的三种方式

要使用 JavaScript&#xff0c;你可以在 HTML 文件中的 <script> 标签中编写代码&#xff0c;或者将代码保存到一个单独的 .js 文件中并在 HTML 文件中引入。以下是一些常用的 JavaScript 使用方式&#xff1a; 内联 JavaScript&#xff1a;在 HTML 文件的 <script&g…

Erlang、RabbitMQ下载与安装教程(windows超详细)

目录 安装Erlang 1.首先安装RabbitMQ需要安装Erlang环境 2.点击下载好的.exe文件进行傻瓜式安装,一直next即可 3.配置Erlang环境变量 安装RabbitMQ 1.给出RabbitMQ官网下载址&#xff1a;Installing on Windows — RabbitMQ&#xff0c;找到 2.配置RabbitMQ环境变量&#xff0…

SparkStreaming与Kafka整合

1.3 SparkStreaming与Kafka整合 1.3.1 整合简述 kafka是做消息的缓存&#xff0c;数据和业务隔离操作的消息队列&#xff0c;而sparkstreaming是一款准实时流式计算框架&#xff0c;所以二者的整合&#xff0c;是大势所趋。 ​ 二者的整合&#xff0c;有主要的两大版本。 kaf…