代码随想录-刷题第三十九天

动态规划理论基础

动态规划的题目由重叠子问题构成,每一个状态一定是由上一个状态推导出来的。这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的。

动态规划五步曲

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

动态规划里面递推公式十分重要,但是确定dp数组,初始化,遍历顺序也同样十分重要,一定要严格按照这五步进行,将每一步的思路理清。

做动态规划的题目遇到问题时,最好的方式就是打印出dp数组,看是否和自己推理一致。


509. 斐波那契数

题目链接:509. 斐波那契数

思路:动态规划五步曲:

  1. dp[i]的定义为:第i个数的斐波那契数值是dp[i]

  2. 递推公式:dp[i] = dp[i - 1] + dp[i - 2]

  3. 初始化:dp[0] = 0, dp[1] = 1

  4. 从递推公式可以看出,一定是从前向后遍历的。

  5. 举例看是否可行,当N为10的时候,dp数组应该是如下的数列:

    0 1 1 2 3 5 8 13 21 34 55

    如果代码写出来,发现结果不对,就把dp数组打印出来看看与推导的数列是否一致。

class Solution {public int fib(int n) {if (n == 0) return 0;if (n == 1) return 1;             int[] dp = new int[n + 1];dp[0] = 0;dp[1] = 1;for (int i = 2; i <= n; i++){dp[i] = dp[i - 1] + dp[i - 2];}return dp[n];}
}

可以发现,只需要维护两个数值,不需要记录整个序列。代码如下:

class Solution {public int fib(int n) { // 动态规划if (n <= 1) return n;int dp0 = 0;int dp1 = 1;for (int i = 2; i <= n; i++) {int sum = dp1 + dp0;dp0 = dp1;dp1 = sum;}return dp1;}
}

70. 爬楼梯

题目链接:70. 爬楼梯

思路:动态规划五步曲

  1. dp[i]: 爬到第i层楼梯,有dp[i]种方法

  2. 递推公式:dp[i] = dp[i - 1] + dp[i - 2]

    从dp[i]的定义可以看出,dp[i] 可以有两个方向推出来。

    首先是dp[i - 1],上i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶不就是dp[i]了么。

    还有就是dp[i - 2],上i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶不就是dp[i]了么。

    那么dp[i]就是 dp[i - 1]与dp[i - 2]之和!所以dp[i] = dp[i - 1] + dp[i - 2] 。

    在推导dp[i]的时候,一定要时刻想着dp[i]的定义,否则容易跑偏。

  3. 初始化:dp[1] = 1, dp[2] = 2

    题目提示:1 <= n <= 45,所以本题不用考虑dp[0]的初始化!

  4. 从递推公式可以看出是从前向后遍历。

  5. 举例看是否可行

class Solution {public int climbStairs(int n) {if (n == 1) return 1;// 1、确定dp数组及下标含义// dp[i]代表爬到第i层楼梯,有dp[i]种方法int[] dp = new int[n + 1];// 2、确定递推函数// dp[i] = dp[i - 1] + dp[i - 2]// 3、确定初始化dp[1] = 1;dp[2] = 2;// 4、确定遍历顺序for (int i = 3; i <= n; i++) {dp[i] = dp[i - 1] + dp[i - 2];}return dp[n];}
}

本题与斐波那契数相同,可以将空间复杂度从O(n)降为O(1)。


746. 使用最小花费爬楼梯

题目链接:746. 使用最小花费爬楼梯

思路:动态规划五步曲

  1. dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]。

    题目中说 “你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯” 也就是相当于 跳到 下标 0 或者 下标 1 是不花费体力的, 从 下标 0 下标1 开始跳就要花费体力了。

  2. 递推公式:dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2])

    可以有两个途径得到dp[i],一个是dp[i - 1],一个是dp[i - 2]

    dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。

    dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。

    那么究竟是从dp[i - 1]跳还是从dp[i - 2]跳呢?一定是选最小的!

  3. 初始化:dp[0] = 0, dp[1] = 0。我们认为第一步无需支付费用,所以到第一个台阶和到第二个台阶都是0。

  4. 遍历顺序为从前到后

  5. 举例推导dp数组

    拿cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] ,来模拟一下dp数组的状态变化

    img

    如果代码写出来有问题,就把dp数组打印出来,看看和如上推导的是否一致。

class Solution {public int minCostClimbingStairs(int[] cost) {int len = cost.length;int[] dp = new int[len + 1];// 每次最多走两步,前两个台阶无需支付费用dp[0] = 0;dp[1] = 0;// 计算到达每一层台阶的最小费用for (int i = 2; i <= len; i++) {dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);}return dp[len];}
}

还可以优化空间复杂度,因为dp[i]就是由前两位推出来的,那么也不用dp数组了

class Solution {public int minCostClimbingStairs(int[] cost) {int len = cost.length;// 每次最多走两步,前两个台阶无需支付费用int dp0 = 0;int dp1 = 0;// 计算到达每一层台阶的最小费用for (int i = 2; i <= len; i++) {int dp_i = Math.min(dp1 + cost[i - 1], dp0 + cost[i - 2]);dp0 = dp1;dp1 = dp_i;}return dp1;}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/582671.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Matlab:非线性规划

1、语法&#xff1a; xfmincon(fun,x0,A,b) xfmincon(fun,x0,A,b,Aeq,beq) xfmincon(fun,x0,A,b,Aeq,beq,lb,ub) xfmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon) xfmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) xfmincon(problem) [x,fval]fmincon(___) [x,fval,exitflag,…

边缘检测——PidiNet网络训练自己数据集并优化推理测试(详细图文教程)

PiDiNet 是一种用于边缘检测的算法&#xff0c;它提出了一种简单、轻量级但有效的架构。PiDiNet 采用了新 颖的像素差卷积&#xff0c;将传统的边缘检测算子集成到现代 CNN 中流行的卷积运算中&#xff0c;以增强任务性能。 在 BSDS500、NYUD 和 Multicue 上进行了大量的实验…

小米路由器2(R2D) 安装 MIXBOX

1. 先刷开发版 ROM http://www1.miwifi.com/miwifi_download.html 进入上述网页&#xff0c;找到 R2D 点击下载 开发版 ROM 教程 看 下载按钮上边的 “刷机教程” 刷机教程 2. 开启SSH工具 登录自己的小米账号后&#xff0c;里面会显示出 自己的 root密码&#xff1b; 默认…

『JavaScript』JavaScript事件类型详解:全面解析各类用户交互行为

&#x1f4e3;读完这篇文章里你能收获到 理解事件驱动编程的基本概念和工作原理掌握JavaScript中常见的事件类型及其应用场合学习如何使用DOM API添加和移除事件监听器探讨事件冒泡、事件捕获和事件委托等高级事件处理技术 文章目录 一、事件处理程序1. HTML事件处理HTML事件处…

Springboot拦截器及统一异常处理

文章目录 一、Java中异常相关概念1、异常类2、异常处理方法3、注意事项4、自定义异常 二、配置全局异常处理1、统一返回体定义2、定义异常处理实现类3、全局异常处理类 三、Springboot拦截器1、定义拦截器2、注册拦截器 四、验证效果 一、Java中异常相关概念 1、异常类 Throw…

Armpro脱壳软件搭建教程附源代码

PHP8.0版本&#xff0c;数据库8.0版本 1.配置注册机文件&#xff0c;打开将arm.zip/res目录下&#xff0c;mt管理器搜索将其全部修改为你自己的域名或者是服务器IP 2.然后建立数据库 数据库账号arm 数据库用户名arm 数据库密码EsZfXY4tD3h2NNA4 3.导入数据库 4.配置Redi…

[每周一更]-(第44期):GIT版本控制之忽略文件

基础概念 在 Git 中&#xff0c;可以通过 .gitignore 文件来指定不需要纳入版本控制的文件或文件夹&#xff0c;这些被忽略的文件或文件夹不会被提交到仓库中。 在项目根目录下创建一个名为 .gitignore 的文件&#xff0c;并在其中列出需要忽略的文件或文件夹。一些常见的示例…

SASS循环

<template><div><button class"btn type-1">默认按钮</button><button class"type-2">主要按钮</button><button class"type-3">成功按钮</button><button class"type-4">信息…

企业数据可视化-亿发数据化管理平台提供商,实现一站式数字化运营

近些年来&#xff0c;国内企业数据化管理升级进程持续加速&#xff0c;以物联网建设、人工智能、大数据和5G网络等新技术的发展&#xff0c;推动了数字经济的蓬勃发展&#xff0c;成为维持经济持续稳定增长的重要引擎。如今许多国内中小型企业纷纷摒弃传统管理模式&#xff0c;…

[卷积神经网络]FCOS--仅使用卷积的Anchor Free目标检测

项目源码&#xff1a; FCOShttps://github.com/tianzhi0549/FCOS/ 一、概述 作为一种Anchor Free的目标检测网络&#xff0c;FCOS并不依赖锚框&#xff0c;这点类似于YOLOx和CenterNet&#xff0c;但CenterNet的思路是寻找目标的中心点&#xff0c;而FCOS则是寻找每个像素点&…

css中sprite(css精灵)是什么,有什么优缺点

概念 将多个小图片拼接到一个图片中 。通过 background-position 和元素尺寸调节需要显示的背景图案。 优点 减少 HTTP 请求数&#xff0c;极大地提高页面加载速度 增加图片信息重复度&#xff0c;提高压缩比&#xff0c;减少图片大小 更换⻛格方便&#xff0c; 只需在一张或…

六、Redis 分布式系统

六、Redis 分布式系统 六、Redis 分布式系统6.1 数据分区算法6.1.1 顺序分区6.1.2 哈希分区 6.2 系统搭建与运行6.2.1 系统搭建6.2.2 系统启动与关闭 6.3 集群操作6.3.1 连接集群6.3.2 写入数据6.3.3 集群查询6.3.4 故障转移6.3.5 集群扩容6.3.6 集群收缩 6.4 分布式系统的限制…

mysql保姆安装教程

一.下载install文件 1.进入Mysql官网&#xff0c;点击下载 2.选择MySQL Installer for Windows 3.推荐选择第二个安装包 4.不登陆&#xff0c;开始下载 5.等待下载完成 二.安装前的配置 通过电脑“设置”&#xff0c;检查电脑是否包含中文名&#xff0c;如果包含请重命名 …

紫光展锐5G扬帆出海 | 东南亚成为5G新热土

东南亚是一块充满活力和潜力的市场&#xff0c;这里人口基数大、年轻消费群体占比高&#xff0c;电子市场在过去几年显著增长。 增速“狂飙”的东南亚手游 近年来&#xff0c;东南亚手游下载量逐年增长&#xff0c;2023 年第一季度下载量突破 21 亿次&#xff0c;贡献了全球近…

2023年12月27日学习记录_加入噪声

目录 1、今日计划学习内容2、今日学习内容1、add noise to audio clipssignal to noise ratio(SNR)加入 additive white gaussian noise(AWGN)加入 real world noises 2、使用kaggel上的一个小demo&#xff1a;CNN模型运行时出现的问题调整采样率时出现bug 3、明确90dB下能否声…

【SD】IP-Adapter 进阶 - 同款人物【2】

测试模型&#xff1a;###最爱的模型\flat2DAnimerge_v30_2.safetensors [b2c93e7a89] 原图&#xff1a; 加入 control1 [IP-Adapter] 加入 control 2 [OpenPose] 通过openpose骨骼图修改人物动作。 加入 control 3 lineart 加入cotrol3 …

Unity中Shader 齐次坐标

文章目录 前言一、什么是齐次坐标二、齐次坐标增加分量 w 的意义1、当 w ≠ \neq  0时&#xff1a;2、当 w 0时&#xff1a;3、用方程组&#xff0c;直观的看一下w的意义 前言 在之前的文章中&#xff0c;我们进行了正交相机视图空间转化到裁剪空间的推导。 Unity中Shade…

三大强势大语言模型怎么选?看这篇文章就够了!

现在的人可以有多懒&#xff1f;啊&#xff0c;不&#xff0c;是多聪明&#xff1f;&#xff08;毕竟人和动物的根本区别在于能否制造和使用工具。&#xff09; 遇到任何事情&#xff0c;可以随时大小问。你甚至都不需要手动输入&#xff0c;因为语言输入已经帮你简化了这个步…

linux调试笔记

文章目录 基本启动调试与附加进程断点程序运行控制tui模式查看堆栈与变量监视变量多线程调试 扩展自定义跳转命令解析自定义类型禁用动态库自动加载设置源码路径断点时执行命令gdbserver远程调试 gdb脚本QtCreator调试Linux下处理编译、运行时的一些问题undefined symbol问题-n…

Android ImageView如何使用.svg格式图片

我们知道imageview常用的图片格式是.jpg/.png或者drawable里的部分.xml文件。但有时UI会给过来.svg格式的文件&#xff0c;下面讲解如何使用.svg格式图片文件 step1:AS点击File -> New -> Vector Asset step2:选中要使用的.svg文件&#xff0c;按需要命名和调整&#x…