助力打造清洁环境,基于美团最新YOLOv6-4.0开发构建公共场景下垃圾堆放垃圾桶溢出检测识别系统

公共社区环境生活垃圾基本上是我们每个人每天几乎都无法避免的一个问题,公共环境下垃圾投放点都会有固定的值班时间,但是考虑到实际扔垃圾的无规律性,往往会出现在无人值守的时段内垃圾堆放垃圾桶溢出等问题,有些容易扩散的垃圾比如:碎纸屑、泡沫粒等等,一旦遇上大风天气往往就会被吹得遍地都是给垃圾清理工作带来负担。

本文的主要目的及时想要探索分析通过接入社区实时视频流数据来对公共环境下的垃圾投放点进行自动化的智能分析计算,当探测到异常问题比如:随意堆放垃圾、垃圾桶溢出等问题的时候结合一些人工业务预设的规则来自动通过短信等形式推送事件给相关的工作人员来进行及时的处置这一方案的可行性,博文主要是侧重对检测模型的开发实现,业务规则需要到具体的项目中去细化,这块就不作为文本的实践内容。

在前文中,我们已经陆续开发了相关的实践项目,感兴趣的话可以自行移步阅读即可:

《助力打造清洁环境,基于YOLOv3开发构建公共场景下垃圾堆放垃圾桶溢出检测识别系统》

《助力打造清洁环境,基于YOLOv4开发构建公共场景下垃圾堆放垃圾桶溢出检测识别系统》

《助力打造清洁环境,基于YOLOv5全系列模型【n/s/m/l/x】开发构建公共场景下垃圾堆放垃圾桶溢出检测识别系统》

本文紧接前文系列,主要是想要基于YOLOv6这一经典的模型来开发实践性质的项目,首先看下实例效果:

Yolov6是美团开发的轻量级检测算法,截至目前为止该算法已经迭代到了4.0版本,每一个版本都包含了当时最优秀的检测技巧和最最先进的技术,YOLOv6的Backbone不再使用Cspdarknet,而是转为比Rep更高效的EfficientRep;它的Neck也是基于Rep和PAN搭建了Rep-PAN;而Head则和YOLOX一样,进行了解耦,并且加入了更为高效的结构。YOLOv6也是沿用anchor-free的方式,抛弃了以前基于anchor的方法。除了模型的结构之外,它的数据增强和YOLOv5的保持一致;而标签分配上则是和YOLOX一样,采用了simOTA;并且引入了新的边框回归损失:SIOU。
YOLOv5和YOLOX都是采用多分支的残差结构CSPNet,但是这种结构对于硬件来说并不是很友好。所以为了更加适应GPU设备,在backbone上就引入了ReVGG的结构,并且基于硬件又进行了改良,提出了效率更高的EfficientRep。RepVGG为每一个3×3的卷积添加平行了一个1x1的卷积分支和恒等映射的分支。这种结构就构成了构成一个RepVGG Block。和ResNet不同的是,RepVGG是每一层都添加这种结构,而ResNet是每隔两层或者三层才添加。RepVGG介绍称,通过融合而成的3x3卷积结构,对计算密集型的硬件设备很友好。

简单看下实例数据情况:

训练数据配置文件如下所示:

# Please insure that your custom_dataset are put in same parent dir with YOLOv6_DIR
train: ./dataset/images/train # train images
val: ./dataset/images/test # val images
test: ./dataset/images/test # test images (optional)# whether it is coco dataset, only coco dataset should be set to True.
is_coco: False# Classes
nc: 3  # number of classes# class names
names: ['trash_over', 'garbage', 'trash_no_full']

默认我先选择的是最为轻量级的yolov6n系列的模型,基于finetune来进行模型的开发:

# YOLOv6s model
model = dict(type='YOLOv6n',pretrained='weights/yolov6n.pt',depth_multiple=0.33,width_multiple=0.25,backbone=dict(type='EfficientRep',num_repeats=[1, 6, 12, 18, 6],out_channels=[64, 128, 256, 512, 1024],fuse_P2=True,cspsppf=True,),neck=dict(type='RepBiFPANNeck',num_repeats=[12, 12, 12, 12],out_channels=[256, 128, 128, 256, 256, 512],),head=dict(type='EffiDeHead',in_channels=[128, 256, 512],num_layers=3,begin_indices=24,anchors=3,anchors_init=[[10,13, 19,19, 33,23],[30,61, 59,59, 59,119],[116,90, 185,185, 373,326]],out_indices=[17, 20, 23],strides=[8, 16, 32],atss_warmup_epoch=0,iou_type='siou',use_dfl=False, # set to True if you want to further train with distillationreg_max=0, # set to 16 if you want to further train with distillationdistill_weight={'class': 1.0,'dfl': 1.0,},)
)solver = dict(optim='SGD',lr_scheduler='Cosine',lr0=0.0032,lrf=0.12,momentum=0.843,weight_decay=0.00036,warmup_epochs=2.0,warmup_momentum=0.5,warmup_bias_lr=0.05
)data_aug = dict(hsv_h=0.0138,hsv_s=0.664,hsv_v=0.464,degrees=0.373,translate=0.245,scale=0.898,shear=0.602,flipud=0.00856,fliplr=0.5,mosaic=1.0,mixup=0.243,
)

当然了也可以使用其他几个系列的模型,不同系列模型训练命令如下:

#yolov6n
python3 tools/train.py --batch-size 8 --conf configs/yolov6n_finetune.py --data data/self.yaml --fuse_ab --device 0 --name yolov6n --epochs 100 --workers 2#yolov6s
python3 tools/train.py --batch-size 16 --conf configs/yolov6s_finetune.py --data data/self.yaml --fuse_ab --device 0 --name yolov6s --epochs 100 --workers 2#yolov6m
python3 tools/train.py --batch-size 16 --conf configs/yolov6m_finetune.py --data data/self.yaml --fuse_ab --device 0 --name yolov6m --epochs 100 --workers 2#yolov6l
python3 tools/train.py --batch-size 8 --conf configs/yolov6l_finetune.py --data data/self.yaml --fuse_ab --device 0 --name yolov6l --epochs 100 --workers 2

根据自己的需要选择使用合适的模型即可。

终端执行如下命令即可启动训练:

python3 tools/train.py --batch-size 8 --conf configs/yolov6n_finetune.py --data data/self.yaml --fuse_ab --device 0 --name yolov6n --epochs 100 --workers 2

训练日志输出如下:

训练完成输出如下所示:

Inferencing model in train datasets.: 100%|?????| 50/50 [00:20<00:00,  2.44it/s]Evaluating speed.Evaluating mAP by pycocotools.
Saving runs/train/yolov6n/predictions.json...
Results saved to runs/train/yolov6n
Epoch: 99 | mAP@0.5: 0.8504197493162378 | mAP@0.50:0.95: 0.6347577838061667Training completed in 5.716 hours.
loading annotations into memory...
Done (t=0.01s)
creating index...
index created!
Loading and preparing results...
DONE (t=0.57s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=5.45s).
Accumulating evaluation results...
DONE (t=0.92s).Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.635Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.850Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.707Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.183Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.401Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.670Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.420Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.750Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.775Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.489Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.600Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.800

感觉整体yolov6系列的模型使用下来最明显的体验就是对于显存的占用还是比较大的,同等量级的模型训练经常会出现OOM的警告信息。相较于yolov5的n系列模型yolov8的n系列模型,yolov6的n系列模型显然会消耗掉更大的显存资源,虽然官方项目兼容了CPU计算,当显存不足的时候会自动使用CPU来完成计算但是本质还是模型自身资源消耗太大的原因,另外一点就是yolov6的模型训练完成后没有像yolov5、yolov8之类的详细的指标评测信息,只有孤零零的权重文件,不利于学术性质的项目使用,除此之外yolov6模型训练会产生一个很大的记录日志的文件,如下:

文件实在是太大了,这一点我觉得很理解不了,如果有懂行的欢迎来指导一下。

可能这些不足之处也是导致yolov6始终不温不火的原因吧。

离线推理实例如下所示:

在实际应用开发的时候可以考虑如何更好地基于目标检测模型的检测计算结果来产生业务上的有效事件,这里大都是需要结合业务需求来设定合理有效的规则和预警逻辑的,这里暂时不是本文的重点,感兴趣的话都可以自行动手尝试下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/581248.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Apache Flink连载(十八):Flink On Yarn运行原理及环境准备

🏡 个人主页:IT贫道_大数据OLAP体系技术栈,Apache Doris,Clickhouse 技术-CSDN博客 🚩 私聊博主:加入大数据技术讨论群聊,获取更多大数据资料。 🔔 博主个人B栈地址:豹哥教你大数据的个人空间-豹哥教你大数据个人主页-哔哩哔哩视频 目录 1. Flink On Yarn运行原理…

【Pytorch】学习记录分享8——PyTorch自然语言处理基础-词向量模型Word2Vec

【Pytorch】学习记录分享7——PyTorch自然语言处理基础-词向量模型Word2Vec 1. 词向量模型Word2Vec)1. 如何度量这个单词的&#xff1f;2.词向量是什么样子&#xff1f;3.词向量对应的热力图&#xff1a;4.词向量模型的输入与输出![在这里插入图片描述](https://img-blog.csdni…

IT安全:实时网络安全监控

了解庞大而复杂的网络环境并非易事&#xff0c;它需要持续观察、深入分析&#xff0c;并对任何违规行为做出快速反应。这就是为什么实时网络安全监控工具是任何组织 IT 安全战略的一个重要方面。 网络攻击和合规性法规是 IT 安全的两个主要驱动因素。同时&#xff0c;数据泄露…

卷积神经网络 反向传播

误差的计算 softmax 经过softmax处理后所有输出节点概率和为1 损失&#xff08;激活函数&#xff09; 多分类问题&#xff1a;输出只可能归于某一个类别&#xff0c;不可能同时归于多个类别。 误差的反向传播 求w的误差梯度 权值的更新 首先是更新输出层和隐藏层之间的权重…

Oracle数据updater如何回滚

1.查询update语句执行的时间节点 &#xff1b; select t.FIRST_LOAD_TIME, t.SQL_TEXT from v$sqlarea t where to_char(t.FIRST_LOAD_TIME) > 2023-03-19/17:00:00 order by t.FIRST_LOAD_TIME desc;开启表的行迁移 alter table test enable row movement;3.回滚表数据到…

【架构】企业信息安全体系架构详解

企业信息安全体系架构来说,是包含技术、运维、管理3个层面。本文说的安全架构,主要集中讨论偏研发技术层面的安全架构。 安全性是软件研发技术体系,系统架构设计阶段的一个关键DFX能力,与可靠性、可服务性、性能等架构属性并列。由于安全性设计自身的特点,涉及到系统架构…

数据分析之词云图绘制

试验任务概述&#xff1a;如下为所给CSDN博客信息表&#xff0c;分别汇总了ai, algo, big-data, blockchain, hardware, math, miniprog等7个标签的博客。对CSDN不同领域标签类别的博客内容进行词频统计&#xff0c;绘制词频统计图&#xff0c;并根据词频统计的结果绘制词云图。…

CentOS 5/6/7 基于开源项目制作openssh 9.6p1 rpm包—— 筑梦之路

背景介绍 开源项目地址&#xff1a;https://github.com/boypt/openssh-rpms.git 该项目主要支持了centos 5 、6、7版本&#xff0c;针对使用了比较老的操作系统进行openssh安全加固&#xff0c;还是不错的项目&#xff0c;使用简单、一件制作&#xff0c;欢迎大家去支持作者。…

c语言-打印某种图案练习题

目录 前言一、题目一二、题目二总结 前言 本篇文章叙述c语言中打印某种图案的练习题&#xff0c;以便加深对c语言的运用和理解。 一、题目一 题目分析&#xff1a; 行与行之间的关系&#xff1a;第一行不进行空格&#xff0c;从第二行开始空一个空格&#xff0c;后面的空格式逐…

羊大师教你如何选择,适合老人饮用的羊奶?

羊大师教你如何选择&#xff0c;适合老人饮用的羊奶&#xff1f; 羊奶作为一种营养丰富的天然健康饮品&#xff0c;备受人们的青睐。而对于老年人来说&#xff0c;选择适合的羊奶品牌和产品并非易事。那么&#xff0c;如何选择适合老人饮用的羊奶呢&#xff1f;下面为您介绍几…

基于Python的城市热门美食数据可视化分析系统

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长 QQ 名片 :) 1. 项目简介 本项目利用网络爬虫技术从XX点评APP采集北京市的餐饮商铺数据&#xff0c;利用数据挖掘技术对北京美食的分布、受欢迎程度、评价、评论、位置等情况进行了深入分析&#xff0c;方便了解城市美食店…

C# 操作非持久化内存映射文件

目录 写在前面 代码实现 进程A 进程B 进程C 调用示例 总结 写在前面 多个进程之间&#xff0c;通过操作未映射到磁盘上现有文件的内存映射文件&#xff0c;可以实现数据共享和类似进程间通讯的功能。以下示例展示了使用三个独立进程&#xff0c;先各自将布尔值写入内存…

cpp_07_类型转换构造_析构函数_深拷贝_静态成员

1 类型转换构造函数 1.1 why? 基本类型之间的转换&#xff0c;编译器内置转换规则&#xff1a;int -> double 类类型之间的转换&#xff0c;编译器不知道转换规则&#xff0c;需要用户提供&#xff1a;Cat -> Dog // consconv_why.cpp 为什么需要自定义转换 #includ…

记一次修复外网无法访问vmware里面的虚拟机的网络端口的问题

发现一个奇怪的网络问题&#xff0c;vmware里一个程序的端口通过vmnat穿透出来&#xff0c;然后这个端口就能够通过局域网被其他机器访问&#xff0c;但是另一个网段就没法访问这个端口。使用主机上的其他程序使用开启同样的端口&#xff0c;另一个网段的机器却可以访问。我想不…

HarmonyOS栅格布局---GridRow

题外话&#xff1a;栅格布局最初是在web 端应用的&#xff0c;为了解决一个系统在不同的屏幕&#xff0c;和不同的设备上可以不进行多次开发的问题&#xff0c;希望一次开发可以最大化的适配用户的不同类型设备&#xff0c;解决方案&#xff1a;将屏幕采用断点的方式进行布局分…

创新驱动数字经济发展,融云获评「2023 数字经济隐形独角兽」

近期&#xff0c;由北京市大兴区经济和信息化局、北京大兴经济开发区管理委员会、北京隐形独角兽信息科技院联合主办的“2023 数字经济独角兽大会”在北京成功举行。关注【融云 RongCloud】&#xff0c;了解协同办公平台更多干货。 作为专注耕耘通信赛道、掌握关键核心技术、具…

LDO线性稳压器与开关电源的原理

线性稳压器LDO典型代表&#xff1a;LM7805 ,AMS1117&#xff0c;还有一下性能比较好的LDO&#xff1a; 开关稳压器典型代表&#xff1a;LM2596&#xff0c;MP1584,TPS5430&#xff0c;MP2315S LDO靠发热分散能量&#xff0c;纹波较小一般在30mv以下&#xff1b;DCDC通过开关开断…

最新国内使用GPT4教程,GPT语音对话使用,Midjourney绘画,ChatFile文档对话总结+DALL-E3文生图

一、前言 ChatGPT3.5、GPT4.0、GPT语音对话、Midjourney绘画&#xff0c;文档对话总结DALL-E3文生图&#xff0c;相信对大家应该不感到陌生吧&#xff1f;简单来说&#xff0c;GPT-4技术比之前的GPT-3.5相对来说更加智能&#xff0c;会根据用户的要求生成多种内容甚至也可以和…

Ubuntu安装K8S的dashboard(管理页面)

原文网址&#xff1a;Ubuntu安装k8s的dashboard&#xff08;管理页面&#xff09;-CSDN博客 简介 本文介绍Ubuntu安装k8s的dashboard&#xff08;管理页面&#xff09;的方法。 Dashboard的作用有&#xff1a;便捷操作、监控、分析、概览。 相关网址 官网地址&#xff1a;…

电路设计(8)——计时器的multism仿真

1.功能设计 这是一个计时电路&#xff0c;在秒脉冲的驱动下&#xff0c;计时器开始累加&#xff0c;6个数码管分别显示计时的 时&#xff1a;分&#xff1a;秒。 仿真图如下所示&#xff1a; 左边的运放构成了振荡电路&#xff0c;可以产生脉冲波。这个脉冲波给计时电路提供基准…