深入浅出:分布式、CAP 和 BASE 理论(荣耀典藏版)

大家好,我是月夜枫,一个漂泊江湖多年的 985 非科班程序员,曾混迹于国企、互联网大厂和创业公司的后台开发攻城狮。

在计算机科学领域,分布式系统是一门极具挑战性的研究方向,也是互联网应用中必不可少的优化实践,而 CAP 理论和 BASE 理论则是分布式系统中的两个关键的概念

今天将带大家深入浅出地探讨这些概念,帮助大家更好地理解分布式系统的奥秘。

目录

一、什么是分布式系统

二、 CAP理论

2.1、C - 一致性(Consistency)

2.1.1强一致性

2.1.3.最终一致性

2.2.A - 可用性(Availability)

三.、CAP 的特点

3.1 分区容错的重要性

3.2 AP Or CP

3.2.1.先保证一致性

3.2.2.先保证可用性

3.3 CAP 如何权衡

3.3.1.满足一致性和分区容错CP

3.3.2满足可用性和分区容错AP

四、 BASE 理论

4.1 基本可用

4.1.1功能需求

4.1.2.非功能需求

4.2 软状态

4.3 最终一致性


一、什么是分布式系统

首先,让我们来谈谈分布式系统。你可以将分布式系统想象成一个庞大的计算机网络,由多个计算机或服务器节点组成,它们可能分布在不同的地理位置上。

如图所示,应用层的三个节点都发布在不同的城市。这些节点之间可以相互通信和协作,共同完成复杂的任务

想象一下,你是一名团队领导,有一项任务需要完成。如果你独自一人完成,可能需要花费很长时间。

但如果你将任务分解成几个子任务,分派给你的团队成员,他们可以并行工作,更快地完成任务。这就是分布式系统的核心思想。

二、 CAP理论

接下来,让我们谈谈 CAP 理论,它是分布式系统设计中非常重要的一个原则。

CAP 是指在分布式系统中,Consistency(一致性)、Availability(可用性)和 Partition tolerance(分区容错性)这三个基本原则。

2.1、C - 一致性(Consistency)

一致性意味着无论你从分布式系统的哪个节点读取数据,你都会获得相同的数据副本,它确保了数据的准确性。

在分布式系统中,广泛的一致性分为三种,分别是强一致性、弱一致性和最终一致性。

2.1.1强一致性

强一致性要求用户在分布式系统中访问数据时,不管是哪个节点的响应,数据都应该完全一致。

比如在订单系统中球鞋库存还剩 10 双,张三刚买了一双球鞋,数据更新完成后,接下来李四看到的球鞋数量就只有 9 双,否则就可能会出现超卖的情况。

但这需要更多的时间和精力来协调,就像李四在买鞋的时候,必须排队先等张三的购买动作结束后才可以继续,效率较低。

2.1.2.弱一致性

弱一致性是指,在分布式系统中的数据被更新后,也允许让后续的访问拿到更新之前的老数据。

就像参加聚会一样,每个人都有自己的钟表。各自的钟表时间可能会有点不一样,但是这不影响大家聚在一起玩耍。

弱一致性提高了业务的效率,但有时会导致一些混乱,想象一下如果聚会人员的时间差太多,就会陷入长久的等待。

2.1.3.最终一致性

最终一致性是弱一致性的特殊形式,要求系统的数据更新完成,在一段时间以后,后续的所有访问都能拿到最新的数据。

这就像朋友圈的消息传播。当你发了一条消息,它不会立刻被所有朋友看到,但最终,每个人都会看到相同的消息。

一般的业务系统基于性价比的考量,绝大多数都是采用最终一致性作为分布式系统的设计思想。

CAP 理论里的一致性,则要求是强一致性。正如官方文档中描述的那样:All nodes see the same data at the same time,所有节点在同一时间内数据完全一致。

2.2.A - 可用性(Availability)

可用性意味着分布式系统的每个请求都应该得到响应,而且应该在有限的时间内完成。

可用性确保了系统的稳定性和可靠性,它描述的是系统能够很好地为用户服务,不会出现用户操作失败或者访问超时的情况,影响用户体验。

即官方所说Reads and writes always succeed,服务在正常响应时间内一直可用。

2.3.P - 分区容错性(Partition Tolerance)

分区容错性是指系统能够在网络分区或通信故障的情况下继续运行,也就是节点之间的网络通信出现故障了,或者系统中的某一个节点出问题了,我们仍然需要保证业务系统可用。

The system continues to operate despite arbitrary message loss or failure of part of the system,分布式系统在遇到某个节点或者网络分区故障时,仍然能够对外提供满足一致性或可用性的服务。

三.、CAP 的特点

3.1 分区容错的重要性

这时,有分布式基础的同学可能就会问了,CAP 理论确实很重要,但是这三个特性似乎不能同时满足,是吧?

没错,这就是 CAP 理论的核心观点。

CAP 理论告诉我们,在一个分布式系统中,我们最多只能同时满足其中 2 个特性,而无法同时满足 3 个。

为什么 C,A,P 三者不可兼得?首先,我们得知道,在分布式系统中,由于网络不可靠,为了保证服务可以时刻对外提供服务,所以分区容错性是一定要保证的

试想如果只有一个分区,谈分布式就没有意义了。而多个分区,一定会有分区的故障问题,分布式系统中保证分区容错就变成最基本的诉求了。

所以现在我们只需考虑在分区容错的基础上,能否同时满足一致性和可用性,我们可以用反证法来证明。

3.2 AP Or CP

假设现在有两个分区 P1 和 P2,分区上都有同一份数据 D1 和 D2, 现在它们是完全相同的。

接下来,有一个请求 1 访问了 P1,更改了 D1 上的数据。然后又有一个请求 2 访问了 P2,去访问 D2 的同一份数据。

这时,我们需要权衡。

3.2.1.先保证一致性

如果先保证满足一致性和分区容错,即 CP。

这个过程很容易出现:D1 已经更新数据,但是查询 D2 时,数据返回的还是老数据。

为了保证 D2 和 D1 数据完全一致,必须在更新 D1 数据时给 P2 上的 D2 数据上锁,等待 D1 更新完成后再同步更新 D2。

这个过程中,锁住的 D2 就没法给请求 2 实时响应,也就是违背了 P2 上的可用性。

所以在满足一致性的前提下,CAP 无法同时满足。

3.2.2.先保证可用性

如果先保证满足可用性和分区容错,即 AP。

可用性要求 P1 和 P2 都可以实时响应,因此在 D2 刚更新完还未同步给 D1 时,两个 DB 的数据是不一致的,也就违背了 P1 和 P2 上的数据一致性。

所以在满足可用性的前提下,CAP 亦无法同时满足。

3.3 CAP 如何权衡

CAP 三者不可兼得,该怎么选择呢?一般根据我们的业务可以有以下选择。

3.3.1.满足一致性和分区容错CP

保证分区的强一致性(C),不要求可用(A)。

相当于请求到达某个系统之前,需要等待数据完全同步以后,才会得到系统的数据响应,一般在数据需严格保持一致的金融系统中会使用这种模式。

3.3.2满足可用性和分区容错AP

保证分区的可用性(A),不要求强一致性(C)。

当请求访问某个分区的数据时,可能拿到未同步的老数据,这种模式一般只要求数据满足最终一致性,进而保证系统响应速度和高可用。

AP 在业界使用范围较广,比如著名的 BASE 理论(下文会细讲)。

3.3.3满足可用和一致性AC

上文已经说过,分布式系统中无法同时保证系统的强一致性(C)和可用性(A)。

这是因为分布式系统中的分区是客观存在无法避免的,而单体系统中的数据库可以通过事务保证数据的一致性和可用性,比如 MySQL 中事务的四大特性(原子性、一致性、隔离性和持久性,简称 ACID)。

四、 BASE 理论

BASE 理论是当今互联网分布式系统的实践总结,它的核心思想在于,既然在分布式系统中实现强一致性的代价太大,那不如退而求其次。

只需要各应用分区在提供高可用服务的基础上,尽最大能力保证数据一致性,也就是保证数据的最终一致性

BASE 理论是 CAP 中保证分区容错(P)的前提下,对可用性(A)和一致性(C)的权衡,它由 Basically Available(基本可用),Soft State(软状态),Eventually-Consistent(最终一致性)三方面构成,简称 BASE 理论。

分布式系统中,CAP 理论提供了一个理论框架,而 BASE 理论则提供了一种实际操作的指导原则。

4.1 基本可用

BASE 理论认为,分布式系统在面临故障或异常情况时,可以选择降低性能或一致性要求,以保持基本的可用性。

这意味着系统可能会出现一些短暂的不一致性,但最终会达到一致状态。

正如一个银行系统的系统设计,一般有功能需求和非功能需求,我们首先需要保证核心功能需求的基本可用性。

4.1.1功能需求

在银行系统里,用户提款、转账等交易模块就是核心功能,是用户的基本需求,不能出问题。

而非核心功能可以出现异常,但需要保证在一段时间内修复。

4.1.2.非功能需求

非功能需求是指用户业务不依赖的其它需求,比如性能相关的:要求用户转账在 0.5 秒内完成,但是由于网络延迟等原因,可以延迟响应至1~2 秒。

由于系统出现此类异常,从而影响了系统的高可用性,但核心流程依然可用,即基本可用性。

4.2 软状态

软状态是指系统服务可能处于中间状态,数据在保证一致性的过程中可能延迟同步,但不会影响系统的可用性。

比如我们在购买火车票付款结束之后,就可能处在一个既没有完全成功,也没有失败的中间等待状态。用户需要等待系统的数据完全同步以后,才会得到是否购票成功的最终状态。

BASE 理论认识到,在分布式系统中,状态可能会随时间变化而软化,而不是立即达到一致状态

这意味着我们需要容忍一些状态的不确定性,比如我们在火车票候补排队时是不确定是否可以候补成功的。

4.3 最终一致性

最终一致性是 BASE 理论的核心思想。它指出,分布式系统可以在一段时间内保持不一致状态,但最终会收敛到一致状态。

它不像强一致性那样,需要分区数据保证实时一致,导致系统数据的同步代价过高。也不像弱一致性那样,数据更新后不保证数据一致,导致后续的请求只能访问到老数据。

当前业界的分布式系统,甚至关系数据库系统的数据,大都是用最终一致性实现的。比如 MySQL 的主从备份,就是在一段时间内通过 binlog 日志和监听线程让从库和主库的数据保持最终一致。

总的来说,BASE 理论其实就是牺牲了各节点数据的强一致性,允许不同节点的数据在一段时间内不一致,来获得更高的性能和高可用性。

在单体系统中,数据库还能通过 ACID 来实现事务的强一致性,但分布式事务需要考虑节点通信的延迟和网络故障。

所以,BASE 理论是我们在实际的分布式系统中经常使用的方案。

好了,本文的技术部分就到这里啦。

最后说一句(求关注,别白嫖我)

如果这篇文章对您有所帮助,或者有所启发的话,帮忙关注一下,您的支持是我坚持写作最大的动力。

求一键三连:点赞、转发、在看。

我从清晨走过,也拥抱夜晚的星辰,人生没有捷径,你我皆平凡,你好,陌生人,一起共勉。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/581051.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LabVIEW利用视觉引导机开发器人精准抓取

LabVIEW利用视觉引导机开发器人精准抓取 本项目利用单目视觉技术指导多关节机器人精确抓取三维物体的技术。通过改进传统的相机标定方法,结合LabVIEW平台的Vision Development和Vision Builder forAutomated Inspection组件,优化了摄像系统的标定过程&a…

ROS学习记录:如何在Github上寻找并安装软件包

一、打开网页输入www.github.com 二、进入github界面 三、打开一个终端,输入mkdir catkin_ws1建立一个工作空间 四、使用cd catkin_ws1进入工作空间 五、使用mkdir src创建一个子目录src就是source,原始资料的意思,指的就是程序源代码这类资源材料&#…

小机器人,电子锁,牙刷,表类开关,磁阀开关等一些安防直流驱动的选型介绍分析

安防监控是一门被人们日益重视的新兴行业,就目前发展来看,应用普及程度越来越广,科技含量也越来越高,几乎所有高新科技都可促进其发展,尤其是信息时代的来临,更为该行业的发展提供契机。其中安防领域最为典…

electron 菜单栏打开指定url页面菜单实现方法

electron 菜单栏打开指定url页面菜单 可以是本地URL也可以是远程的URL 自动判断跳转 以下代码可以在主进程main.js里面也可以是在独立的模块文件里面 const { BrowserWindow } require(electron);//定义窗口加载URL export const winURL process.env.NODE_ENV development …

Android原生实现单选

六年前写的一个控件,一直没有时间总结,趁年底不怎么忙,整理一下之前写过的组件。供大家一起参考学习。废话不多说,先上图。 一、效果图 实现思路使用的是radioGroup加radiobutton组合方式。原理就是通过修改RadioButton 的backgr…

企业私有云容器化架构运维实战

企业私有云容器化架构运维实战 了解 什么是虚拟化: 虚拟化(Virtualization)技术最早出现在 20 世纪 60 年代的 IBM 大型机系统,在70年代的 System 370 系列中逐渐流行起来,这些机器通过一种叫虚拟机监控器(Virtual M…

java浅拷贝BeanUtils.copyProperties引发的RPC异常 | 京东物流技术团队

背景 近期参与了一个攻坚项目,前期因为其他流程原因,测试时间已经耽搁了好几天了,本以为已经解决了卡点,后续流程应该顺顺利利的,没想到 人在地铁上,bug从咚咚来~ 没有任何修改的服务接口,抛出…

配置管理员使用Local方式认证并授权用户级别示例

AAA简介 访问控制是用来控制哪些用户可以访问网络以及可以访问的网络资源。AAA是Authentication(认证)、Authorization(授权)和Accounting(计费)的简称,提供了在NAS(Network Access…

OpenAI大模型中的模型推理

模型推理 推理有两个方案,一个和训练相同,直接加入Lora层,不过会增加推理延时因为多了lora层的计算,适合线下测评用,如下 from peft import PeftModel from transformers import AutoModel, AutoTokenizer ​ model …

解密负载均衡:如何平衡系统负载(下)

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…

spring boot 增量包部署,jar包变小

##pom.xml配置 <plugins><plugin><groupId>org.springframework.boot</groupId><artifactId>spring-boot-maven-plugin</artifactId><configuration><layout>ZIP</layout><includes><include><groupId&…

云原生数据库性能对比(阿里云、百度智能云、腾讯云)

本文作者 LYZ 近些年&#xff0c;云原生数据库成为云厂商的重要发展方向&#xff0c;阿里云、百度智能云、腾讯云均先后发布了自研的云原生数据库。笔者认为云原生数据库具有更高的性价比、更极致的弹性&#xff0c;可以满足业务发展的不同阶段和负载场景的需求&#xff0c;也是…

FPGA高端项目:SDI 视频+音频编解码,提供工程源码和技术支持

目录 1、前言免责声明 2、相关方案推荐我这里已有的 GT 高速接口解决方案我目前已有的SDI编解码方案 3、设计思路和框架设计框图GV8601A均衡EQGTX 时钟要求GTX 调用与控制SMPTE SD/HD/3G-SDISMPTE SD/HD/3G-SDI 接收SMPTE SD/HD/3G-SDI 发送 SDI 视频接收数据处理SDI 音频接收-…

pycharm 工具栏不见了

新版pycharm后&#xff0c; 菜单栏和工具栏不见了 目录 我发现的解决方法&#xff1a; 其他旧版的解决方法&#xff1a; 我发现的解决方法&#xff1a; 其他旧版的解决方法&#xff1a; 另外&#xff0c;一些使用pycharm的新手可能会由于不熟悉软件的功能而误操作&#xff…

【头歌实训】PySpark Streaming 数据源

文章目录 第1关&#xff1a;MySQL 数据源任务描述相关知识PySpark JDBC 概述PySpark JDBCPySpark Streaming JDBC 编程要求测试说明答案代码 第2关&#xff1a;Kafka 数据源任务描述相关知识Kafka 概述Kafka 使用基础PySpark Streaming Kafka 编程要求测试说明答案代码 第1关&a…

scikit-learn文档中的数据生成器

目录 1. make_classification: 2. make_regression: 3. make_blobs: 4. make_moons: 5.make_circles 6. make_sparse_coded_signal: 1. make_classification: 这是一个用于生成复杂二维数据的函数&#xff0c;通常用于可视化分类器的学习过程或者测试机器学习算法的性能…

Kali Linux如何启动SSH并在Windows系统远程连接

文章目录 1. 启动kali ssh 服务2. kali 安装cpolar 内网穿透3. 配置kali ssh公网地址4. 远程连接5. 固定连接SSH公网地址6. SSH固定地址连接测试 简单几步通过[cpolar 内网穿透](cpolar官网-安全的内网穿透工具 | 无需公网ip | 远程访问 | 搭建网站)软件实现ssh 远程连接kali! …

工具系列:TimeGPT_(9)模型交叉验证

交叉验证 文章目录 交叉验证外生变量比较不同的模型 时间序列预测中的主要挑战之一是随着时间的推移固有的不确定性和变异性&#xff0c;因此验证所采用的模型的准确性和可靠性至关重要。交叉验证是一种强大的模型验证技术&#xff0c;特别适用于此任务&#xff0c;因为它提供了…

使用 GitHub 进行团队协作的操作指南

目录 前言1 使用github进行团队开发的意义2 邀请成员加入团队3 克隆和提交代码3.1 克隆远程仓库到本地3.2 加入暂存区3.3 提交修改到本地仓库3.4 设置本地仓库和远程仓库的关联3.5 将本地仓库的代码推送到远程仓库 结语 前言 GitHub 是一个广泛使用的基于 Git 的代码托管平台&…

Java - 获取 Jar 包内的 pom.xml 文件

目录 一.引言 二.通过 jar 命令 ◆ 查看 Jar 包内文件 ◆ 导出 Pom.xml ◆ 导出 Jar 包内文件 三.通过 unzip 命令 ◆ 导出 Jar 包内文件 四.总结 一.引言 引用其他同学的 Jar 包时&#xff0c;需要获取其对应 jar 包内的 pom.xml 文件检查版本依赖关系&#xff0c;下…