ChatGPT Prompting开发实战(一)

一、关于ChatGPT Prompting概述

当我们使用ChatGPT或者调用OpenAI的API时,就是在使用prompt进行交互,用户在对话过程中输入的一切信息都是prompt(提示词),当然工业级的prompt与人们通常理解的prompt可能不太一样。下面是LangChain源码中的“retrieval_qa”模块里的prompt.py文件:

# flake8: noqa

from langchain.prompts import PromptTemplate

prompt_template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.

{context}

Question: {question}

Helpful Answer:"""

PROMPT = PromptTemplate(

    template=prompt_template, input_variables=["context", "question"]

)

其中核心字段“prompt_template”定义了如何使用prompt进行推理。

在前面谈plugin开发时,谈到在开发的应用中,不仅仅是执行tasks,而且需要执行actions,这时就需要agent的参与。下面的架构图展示了用户在与ChatGPT进行交互时agent是如何来执行actions的:

二、基于工业级的源码来解析prompt engineering

LangChain框架一个核心的聚焦点就是agent,其中包括两个重要的模块“react”和“mrkl”。首先我们来看下“mrkl” 部分:

在这个模块中有一个prompt文件,“Question”部分定义了输入的问题,而“Thought”部分,从task的角度来讲就是在回答问题的过程中形成的具体步骤,譬如用户问ChatGPT如何做一道菜,那么给出的回答会涉及到做菜的一系列的步骤,这就是一个所谓“思考”的过程,在涉及具体的“Action”时,说到的是具体的工具的名称,也就是需要有一个东西来调用工具,这就是agent起到的核心作用或者说它要做的事情:

关于Action input,语言模型需要知道某个步骤的输入是什么,而Observation则指调用工具之后返回的结果,这个结果会作为new context返回给ChatGPT,“action”,“action input”和“observation”共同构成了一个反复迭代的过程(类似一个for循环),直到完成“thought”(可以看做是for循环需要满足的条件)部分给出的这样一个“thinking process”的过程,在这个过程中的一系列任务(a list of tasks)是由模型来产生的,这具有重要的意义,举例来说,譬如一个教育产品,老师给学生安排任务,不同的学生具有不同的学习能力,不同的状态,不同的学习时间安排等等,这些信息都可以作为context,不同学生面对的是同样的问题,但是加入不同的context之后,对于LLM来说,产生的步骤就可能不太一样,这就是一个“adaptive learning process”,即从原来的规则系统变成了以模型为驱动的动态调整学习的过程。这样的一个prompt示例可以看做是一个工业级的写法。

在base文件部分,主要用于生成agent,所谓“ZeroShotAgent”就是不需要提供示范:

在下面创建prompt的方法中,提供了参数“tools”,模型会根据配置中的“description_for_model”的内容来决定使用哪个工具:

LangChain提供了以模板化的方法来构建prompt:

通过参数llm和prompt构建一个chain,然后构建tools’ list,告诉模型可以调用哪些工具:

这个类基于前面设定的条件来执行,类似一个service或者server的概念:

这个类中定义了使用chain来查询信息的方法:

这里给出了如下样例,譬如调用SerpAPIWrapper方法进行信息的检索,在chain的配置中给出两个actions,一个是做搜索,一个是进行科学计算:

from langchain import LLMMathChain, OpenAI, SerpAPIWrapper, MRKLChain

from langchain.chains.mrkl.base import ChainConfig

                llm = OpenAI(temperature=0)

                search = SerpAPIWrapper()

                llm_math_chain = LLMMathChain(llm=llm)

                chains = [

                    ChainConfig(

                        action_name = "Search",

                        action=search.search,

                        action_description="useful for searching"

                    ),

                    ChainConfig(

                        action_name="Calculator",

                        action=llm_math_chain.run,

                        action_description="useful for doing math"

                    )

                ]

有了这些配置后,就可以把LLM作为reasoning engine,在需要的时候调用工具进行查询,通过方法from_llm_and_tools构建了一个agent的实例:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/58062.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

03 最长连续序列

最长连续序列 题解 哈希(O(n)) 给定一个未排序的整数数组 nums ,找出数字连续的最长序列(不要求序列元素在原数组中连续)的长度。 请你设计并实现时间复杂度为 O(n) 的算法解决此问题。 题解 哈希(O(n)) class Solution { public:int long…

JVM运行时数据区

文章目录 JVM内存结构图1、运行时数据区域JDK 1.7JDK 1.81. 线程栈(虚拟机栈)2. 本地方法栈3. 程序计数器4. 方法区(元空间)5. 堆6、运行时常量池(Runtime Constant Pool)7、直接内存(Direct Me…

云计算——虚拟化中的网络架构与虚拟网络(文末送书)

作者简介:一名云计算网络运维人员、每天分享网络与运维的技术与干货。 公众号:网络豆 座右铭:低头赶路,敬事如仪 个人主页: 网络豆的主页​​​​​ 目录 前期回顾 前言 一.网卡虚拟化 1.网卡虚拟化方法&…

基于 vue2 发布 npm包

背景:组件化开发需要,走了一遍发布npm包的过程,采用很简单的模式实现包的发布流程,记录如下。 项目参考:基于vue的时间播放器组件,并发布到npm_timeplay.js_xmy_wh的博客-CSDN博客 1、项目初始化 首先&a…

C语言练习题解析:挑战与突破,开启编程新篇章!(1)

💓博客主页:江池俊的博客⏩收录专栏:C语言刷题专栏👉专栏推荐:✅C语言初阶之路 ✅C语言进阶之路💻代码仓库:江池俊的代码仓库🎉欢迎大家点赞👍评论📝收藏⭐&a…

Vue项目直接报错

最近自己在做一个vue2项目,vue并不熟悉,所以求解!!! 通过命令:vue create app 创建项目,但打开后,浏览器直接报错,意思为:不能在模块外使用import语句(at ho…

多维时序 | MATLAB实现SABO-CNN-GRU-Attention多变量时间序列预测

多维时序 | MATLAB实现SABO-CNN-GRU-Attention多变量时间序列预测 目录 多维时序 | MATLAB实现SABO-CNN-GRU-Attention多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 多维时序 | MATLAB实现SABO-CNN-GRU-Attention多变量时间序列预测。 模型描…

框架分析(5)-Django

框架分析(5)-Django 专栏介绍Django核心概念以及组件讲解模型(Model)视图(View)模板(Template)路由(URLconf)表单(Form)后台管理&…

vue中bus的使用和涉及到的问题

创建一个js文件 import Vue from "Vue" export default new Vue 我们可以直接在要使用的页面中引用使用 import bus from /assets/js/eventBus.js;bus.$emit("info", "123") // 使用bus.$on("info", (val) > { // 接收console.l…

【【萌新的STM32学习20--按键输入实验】】

萌新的STM32学习20–按键输入实验 在了解完蜂鸣器的实验之后我们又进行一个小实验 又是正点原子没有上课讲解的实验 对于这种不平滑的情况我们更多的也会去选择方法进行消除抖动 软件消抖:方法很多,我们例程中使用最简单的延时消抖。检测到按键按下后&…

GitLab启动失败:fail: alertmanager: runsv not running

问题描述 sudo gitlab-ctl restart ,报错如下 : summergaoubuntu:/etc/gitlab$ sudo gitlab-ctl start fail: alertmanager: runsv not running fail: gitaly: runsv not running fail: gitlab-exporter: runsv not running fail: gitlab-workhorse: …

【JavaWeb 专题】15个最经典的JavaWeb面试题

文章目录 HTTP长连接和短连接HTTP/1.1 与 HTTP/1.0 的区别可扩展性缓存带宽优化长连接消息传递Host 头域错误提示 AjaxAjax 的优势: JSP 和 servlet 有什么区别?定义区别 JSP 的9大内置对象及作用JSP 的 4 种作用域?session 和 cookie 有什么…

ATA-2161高压放大器的电子实验案例(案例合集)

ATA-2161是一款理想的可放大交直流信号的单通道高压放大器。最大差分输出1600Vp-p(800Vp)高压,可以驱动高压型负载。凭借其优异的指标参数受到不少电子工程师的喜欢,其在电子实验中的应用也非常频繁,下面为大家整理出ATA-2161高压放大器的应用…

代码随想录打卡—day46—【DP】— 8.29 背包END

1 139. 单词拆分 139. 单词拆分 做了很久...估计2h 一开始我的思路卡死了 看题解之后的思路的详解见注释, 我的写法和carl 答案在一些微小的细节上略有不同,我的更好理解,但他的解法更简单。 我写的过程中,需要注意下标和字符…

为何直线导轨要保持日常清洁?

随着时代的发展,已逐步从传统的工业发展模式发展到工业自动化,直线滑轨在工业生产中得到了广泛的应用,大大提高了生产效率,带动了经济效益的增长。 众所周知,想要直线导轨的使用达到预期的效果,日常的保养和…

【论文笔记】Planning and Decision-Making for Autonomous Vehicles

文章目录 Summary1. INTRODUCTION2. MOTION PLANNING AND CONTROL2.1. Vehicle Dynamics and Control2.2. Parallel Autonomy2.3. Motion Planning for Autonomous Vehicles 3. INTEGRATED PERCEPTION AND PLANNING3.1. From Classical Perception to Current Challenges in Ne…

1688API技术解析,实现获得1688商品详情

要实现获得1688商品详情,你需要使用1688 API。1688 API是阿里巴巴旗下的开放平台,它提供了一套丰富的接口,可以让开发者通过编程的方式获取到1688网站上的商品信息。 首先,你需要在阿里开放平台注册一个账号,并创建一…

C++中数组作为参数进行传递方法

文章目录 基础:数组作为函数形参示例:1、一维数组的传递(1)直接传递(2)指针传递(3)引用传递 2、二维数组的传递(1)直接传递(2)指针传递…

Java中word转Pdf工具类

背景: 最近做的一个项目中,对于word转Pdf用的地方很多,特此记录 搭建总图: 代码部分: 1.需要的jar包: aspose-words-15.8.0-jdk16.jar 注:下载好这个jar包后,在项目的根目录新建一…

第一个react应用程序并添加样式

编写第一个react应用程序 将目录下的文件、src文件夹、public文件夹清空&#xff0c;项目根目录下新建一个文件index.js 在文件中写入以下代码 import React from react import ReactDOM from react-dom ReactDOM.render(<h1>欢迎进入React的世界</h1>,document.…