目录
1. Elasticsearch之常用DSL语句
1.1 操作索引
1.2 文档操作
1.3 DSL查询
1.4 搜索结果处理
1.5 数据聚合
1. Elasticsearch之常用DSL语句
1.1 操作索引
mapping是对索引库中文档的约束,常见的mapping属性包括:
- type:字段数据类型,常见的简单类型有:
- 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
- 数值:long、integer、short、byte、double、float、
- 布尔:boolean
- 日期:date
- 对象:object
- index:是否创建索引,默认为true
- analyzer:使用哪种分词器
创建索引
PUT /goods
{"mappings": {"properties": {"brandName": {"type": "keyword"},"categoryName": {"type": "keyword"},"createTime": {"type": "date","format": "yyyy-MM-dd HH:mm:ss"},"id": {"type": "keyword"},"price": {"type": "double"},"saleNum": {"type": "integer"},"status": {"type": "integer"},"stock": {"type": "integer"},"title": {"type": "text","analyzer": "ik_max_word",}}}
}
查询索引
GET /goods
修改索引库
倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引,这简直是灾难。因此索引库一旦创建,无法修改mapping。
虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。
PUT /索引库名/_mapping
{"properties": {"新字段名":{"type": "integer"}}
}
删除索引库
DELETE /goods
1.2 文档操作
新增文档
POST /goods/_doc/1
{"id": 1,"brandName": "Apple","categoryName": "手机","createTime": "2023-12-26 20:00:00","price": 8000,"saleNum": 100,"status": 0,"stock": 100,"title": "Apple iPhone 15 Pro 256GB 远峰蓝色 支持移动联通电信5G 双卡双待手机"
}POST /goods/_doc/2
{"id": 2,"brandName": "Huawei","categoryName": "手机","createTime": "2023-12-26 20:00:00","price": 7000,"saleNum": 400,"status": 0,"stock": 200,"title": "华为 HUAWEI Mate 60 Pro 智能手机 鸿蒙系统卫星通话昆仑玻璃"
}
查询文档
GET /goods/_doc/1//批量获取
GET goods/_doc/_mget
{"ids":["1","2"]
}
删除文档
DELETE /goods/_doc/1
修改文档
全量修改是覆盖原来的文档,其本质是:
- 根据指定的id删除文档
- 新增一个相同id的文档
注意:如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了。
PUT /{索引库名}/_doc/文档id
{"字段1": "值1","字段2": "值2",// ... 略
}
增量修改是只修改指定id匹配的文档中的部分字段。
POST /{索引库名}/_update/文档id
{"doc": {"字段名": "新的值",}
}
1.3 DSL查询
查询所有
GET /goods/_search
{"query": {"match_all": {}}
}
全文检索
//单字段查询
GET /goods/_search
{"query": {"match": {"title": "手机"}}
}//多字段查询
GET /goods/_search
{"query": {"multi_match": {"query": "手机","fields": ["title"]}}
}
精准查询
精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:
- term:根据词条精确值查询
- range:根据值的范围查询
term查询的字段是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。
GET /goods/_search
{"query": {"term": {"categoryName": {"value": "手机"}}}
}//匹配多个term
GET /goods/_search
{"query": {"terms": {"categoryName": ["手机","电脑"]}}
}
范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。
GET /goods/_search
{"query": {"range": {"price": {"gte": 7500,"lte": 9000}}}
}
复合查询
- must:必须匹配的条件,可以理解为“与”
- should:选择性匹配的条件,可以理解为“或”
- must_not:必须不匹配的条件,不参与打分
- filter:必须匹配的条件,不参与打分
POST goods/_search
{"query": {"bool": {"must": [{"term": {"brandName": {"value": "Apple"}}}],"should": [{"term": {"categoryName": {"value": "手机"}}}],"filter": [{"range": {"stock": {"gt": 0}}}]}}
}
1.4 搜索结果处理
普通字段排序
GET /goods/_search
{"query": {"match_all": {}},"sort": [{"stock": "desc" //asc升序}]
}
分页
elasticsearch中通过修改from、size参数来控制要返回的分页结果:
- from:从第几个文档开始
- size:总共查询几个文档
GET /goods/_search
{"query": {"match_all": {}},"from": 0,"size": 1
}
高亮显示
POST goods/_search
{"query": {"match": {"title": "手机"}},"highlight": {"fields": {"title": {"pre_tags": ["<font color='red'>"],"post_tags": ["</font>"]}}}
}
1.5 数据聚合
聚合常见的有三类:
- 桶(Bucket)聚合:用来对文档做分组
- TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组
- Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组
- 度量(Metric)聚合:用以计算一些值,比如:最大值、最小值、平均值等
- Avg:求平均值
- Max:求最大值
- Min:求最小值
- Stats:同时求max、min、avg、sum等
- 管道(pipeline)聚合:其它聚合的结果为基础做聚合
统计所有数据中的品牌有几种,按照品牌对数据分组。
GET /goods/_search
{"size": 0, //设置size为0,结果中不包含文档,只包含聚合结果"aggs": { // 定义聚合"brandAgg": { //给聚合起个名字"terms": { // 聚合的类型,按照品牌值聚合,所以选择term"field": "brandName", // 参与聚合的字段"size": 20 // 希望获取的聚合结果数量}}}
}
对于每个品牌的聚合限定聚合范围,并且根据Bucket内的文档数量进行升序排序
GET /goods/_search
{"query": {"range": {"stock": {"gte": 10}}}, "size": 0, //设置size为0,结果中不包含文档,只包含聚合结果"aggs": { // 定义聚合"brandAgg": { //给聚合起个名字"terms": { // 聚合的类型,按照品牌值聚合,所以选择term"field": "brandName", // 参与聚合的字段"size": 20, // 希望获取的聚合结果数量"order": {"_count": "asc"}}}}
}
按照品牌分组,形成了一个个桶。对桶内的数据做运算,获取每个品牌的stock的min、max、avg等值。
GET /goods/_search
{"query": {"range": {"stock": {"gte": 10}}}, "size": 0, "aggs": { "brandAgg": {"terms": {"field": "brandName", "size": 20, "order": {"_count": "asc"}},"aggs": {"stock_status": {"stats": {"field": "stock"}}}}}
}