树莓派,opencv,Picamera2利用舵机云台追踪人脸(PID控制)

一、需要准备的硬件

  1. Raspiberry Pi 4b
  2. 两个SG90 180度舵机(注意舵机的角度,最好是180度且带限位的,切勿选360度舵机)
  3. 二自由度舵机云台(如下图)
  4. Raspiberry CSI 摄像头
    组装后的效果:
    组装后的效果

二、项目目标

追踪人脸:
当人脸移动时,摄像头通过控制两个伺服电机(分别是偏航和俯仰)把该人脸放到视界的中心位置,本文采用了PID控制伺服电机

三、具体步骤

3.1 下载用于人脸识别的级联分类器

下载级联分类器“haarcascade_frontalface_default.xml”,下载地址:haarcascade_frontalface_default.xml
下载完成后将其与后面的所有文件放到同一目录中。

3.2人脸追踪代码

  1. 创建文件“face_tracking_PID.py” ,代码如下:
#face_tracking_PID.py
#-*- coding: UTF-8 -*-	
# 调用必需库
from multiprocessing import Manager
from multiprocessing import Process
from objcenter import ObjCenter
from pid import PID
from servo import Servo
import argparse
import signal
import time
import sys
import cv2
from picamera2 import Picamera2# 定义舵机
pan=Servo(pin=19)
tilt=Servo(pin=16)#定义图像尺寸
dispW=1280
dispH=720# 键盘终止函数
def signal_handler(sig, frame):# 输出状态信息print("[INFO] You pressed `ctrl + c`! Exiting...")# 关闭舵机pan.stop()tilt.stop()# 退出sys.exit()def obj_center(args, objX, objY, centerX, centerY):# ctrl+c退出进程signal.signal(signal.SIGINT, signal_handler)# 启动视频流并缓冲print("[INFO] waiting for camera to warm up...")cv2.startWindowThread()picam2 = Picamera2()preview_config = picam2.create_preview_configuration(main={"size": (dispW, dispH),"format":"RGB888"})picam2.configure(preview_config)picam2.start()time.sleep(2.0)# 初始化人脸中心探测器obj = ObjCenter(args["cascade"])# 进入循环while True:# 从视频流抓取图像并旋转frame= picam2.capture_array()frame = cv2.flip(frame, 1)# 找到图像中心(H, W) = frame.shape[:2]centerX.value = W // 2centerY.value = H // 2#draw a point in the center of framecv2.circle(frame, (centerX.value, centerY.value), 5, (0, 0, 255), -1)# 找到人脸中心objectLoc = obj.update(frame, (centerX.value, centerY.value))((objX.value, objY.value), rect) = objectLocprint("objx.value", objX.value)print("objy.value", objY.value)# 绘制人脸外界矩形if rect is not None:(x, y, w, h) = rectcv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)fX = int(x + (w / 2.0))fY = int(y + (h / 2.0))cv2.circle(frame, (fX, fY), 5, (0, 0, 255), -1)# 在人脸中心和视窗中心画一条连线cv2.line(frame, (centerX.value, centerY.value),(fX, fY), (0, 255, 0), 2)# 显示图像cv2.imshow("Pan-Tilt Face Tracking", frame)cv2.waitKey(1)def pid_process(output, p, i, d, objCoord, centerCoord):# ctrl+c退出进程signal.signal(signal.SIGINT, signal_handler)# 创建一个PID类的对象并初始化p = PID(p.value, i.value, d.value)p.initialize()# 进入循环while True:# 计算误差error = centerCoord.value - objCoord.value# 更新输出值,当error小于50时,误差设为0,以避免云台不停运行。if abs(error) < 50:error = 0output.value = p.update(error)def set_servos(panAngle, tiltAngle):# ctrl+c退出进程signal.signal(signal.SIGINT, signal_handler)#进入循环while True:# 偏角变号yaw = -1 * panAngle.valuepitch = -1 * tiltAngle.value# 设置舵机角度。pan.set_angle(yaw)tilt.set_angle(pitch)# 启动主程序
if __name__ == "__main__":# 建立语法分析器ap = argparse.ArgumentParser()ap.add_argument("-c", "--cascade", type=str, required=True,help="path to input Haar cascade for face detection")args = vars(ap.parse_args())# 启动多进程变量管理with Manager() as manager: #相当于manager=Manager(),with as 语句操作上下文管理器(context manager),它能够帮助我们自动分配并且释放资源。# 舵机角度置零pan.set_angle(0)tilt.set_angle(0)# 为图像中心坐标赋初值centerX = manager.Value("i", 0) #"i"即为整型integercenterY = manager.Value("i", 0)# 为人脸中心坐标赋初值objX = manager.Value("i", 0)objY = manager.Value("i", 0)# panAngle和tiltAngle分别是两个舵机的PID控制输出量	    panAngle = manager.Value("i", 0)tiltAngle = manager.Value("i", 0)# 设置一级舵机的PID参数panP = manager.Value("f", 0.015)  # "f"即为浮点型floatpanI = manager.Value("f", 0.01)panD = manager.Value("f", 0.0008)# 设置二级舵机的PID参数tiltP = manager.Value("f", 0.025)tiltI = manager.Value("f", 0.01)tiltD = manager.Value("f", 0.008)# 创建4个独立进程# 1. objectCenter  - 探测人脸# 2. panning       - 对一级舵机进行PID控制,控制偏航角# 3. tilting       - 对二级舵机进行PID控制,控制俯仰角# 4. setServos     - 根据PID控制的输出驱动舵机processObjectCenter = Process(target=obj_center,args=(args, objX, objY, centerX, centerY))processPanning = Process(target=pid_process,args=(panAngle, panP, panI, panD, objX, centerX))processTilting = Process(target=pid_process,args=(tiltAngle, tiltP, tiltI, tiltD, objY, centerY))processSetServos = Process(target=set_servos, args=(panAngle, tiltAngle))# 开启4个进程processObjectCenter.start()processPanning.start()processTilting.start()processSetServos.start()# 添加4个进程processObjectCenter.join()processPanning.join()processTilting.join()processSetServos.join()
  1. 创建文件“objcenter.py”,代码如下:
#objcenter.py
#-*- coding: UTF-8 -*-
# 调用必需库
import cv2class ObjCenter:def __init__(self, haarPath):# 加载人脸探测器self.detector = cv2.CascadeClassifier(haarPath)def update(self, frame, frameCenter):# 将图像转为灰度图gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 探测图像中的所有人脸rects = self.detector.detectMultiScale(gray, scaleFactor=1.05,minNeighbors=9, minSize=(30, 30),flags=cv2.CASCADE_SCALE_IMAGE)# 是否检测到人脸if len(rects) > 0:# 获取矩形的参数# x,y为左上角点坐标,w,h为宽度和高度# 计算图像中心(x, y, w, h) = rects[0]faceX = int(x + (w / 2.0))faceY = int(y + (h / 2.0))# 返回人脸中心return ((faceX, faceY), rects[0])# 如果没有识别到人脸,返回图像中心return (frameCenter, None)
  1. 创建“pid.py”,代码如下:
#pid.py
#-*- coding: UTF-8 -*-
# 调用必需库
import timeclass PID:def __init__(self, kP=1, kI=0, kD=0):# 初始化参数self.kP = kPself.kI = kIself.kD = kDdef initialize(self):# 初始化当前时间和上一次计算的时间self.currTime = time.time()self.prevTime = self.currTime# 初始化上一次计算的误差self.prevError = 0# 初始化误差的比例值,积分值和微分值self.cP = 0self.cI = 0self.cD = 0def update(self, error, sleep=0.2):# 暂停time.sleep(sleep)# 获取当前时间并计算时间差self.currTime = time.time()deltaTime = self.currTime - self.prevTime# 计算误差的微分deltaError = error - self.prevError# 比例项self.cP = error# 积分项self.cI += error * deltaTime# 微分项self.cD = (deltaError / deltaTime) if deltaTime > 0 else 0# 保存时间和误差为下次更新做准备self.prevTime = self.currTimeself.prevError = error# 返回输出值return sum([self.kP * self.cP,self.kI * self.cI,self.kD * self.cD])
  1. 上述代码中的from servo import Servo导入servo,这个库是没有的,我们要手动创建这个库,在object_tracking.py所在的目录下新建servo.py文件,复制下面的代码到文件中
#!/usr/bin/env python3
import pigpio
from time import sleep
# Start the pigpiod daemon
import subprocess
result = None
status = 1
for x in range(3):p = subprocess.Popen('sudo pigpiod', shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)result = p.stdout.read().decode('utf-8')status = p.poll()if status == 0:breaksleep(0.2)
if status != 0:print(status, result)
'''
> Use the DMA PWM of the pigpio library to drive the servo
> Map the servo angle (0 ~ 180 degree) to (-90 ~ 90 degree)'''class Servo():MAX_PW = 1250  # 0.5/20*100MIN_PW = 250 # 2.5/20*100_freq = 50 # 50 Hz, 20msdef __init__(self, pin, min_angle=-90, max_angle=90):self.pi = pigpio.pi()self.pin = pin self.pi.set_PWM_frequency(self.pin, self._freq)self.pi.set_PWM_range(self.pin, 10000)      self.angle = 0self.max_angle = max_angleself.min_angle = min_angleself.pi.set_PWM_dutycycle(self.pin, 0)def set_angle(self, angle):if angle > self.max_angle:angle = self.max_angleelif angle < self.min_angle:angle = self.min_angleself.angle = angleduty = self.map(angle, -90, 90, 250, 1250)self.pi.set_PWM_dutycycle(self.pin, duty)def get_angle(self):return self.angledef stop(self):self.pi.set_PWM_dutycycle(self.pin, 0)self.pi.stop()# will be called automatically when the object is deleted# def __del__(self):#     passdef map(self, x, in_min, in_max, out_min, out_max):return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_minif __name__ =='__main__':from vilib import Vilib# Vilib.camera_start(vflip=True,hflip=True) # Vilib.display(local=True,web=True)pan = Servo(pin=13, max_angle=90, min_angle=-90)tilt = Servo(pin=12, max_angle=30, min_angle=-90)panAngle = 0tiltAngle = 0pan.set_angle(panAngle)tilt.set_angle(tiltAngle)sleep(1)while True:for angle in range(0, 90, 1):pan.set_angle(angle)tilt.set_angle(angle)sleep(.01)sleep(.5)for angle in range(90, -90, -1):pan.set_angle(angle)tilt.set_angle(angle)sleep(.01)sleep(.5)for angle in range(-90, 0, 1):pan.set_angle(angle)tilt.set_angle(angle)sleep(.01)sleep(.5)
  1. 在树莓派相应文件目录中输入`“python face_tracking_PID.py --cascade haarcascade_frontalface_default.xml",即可实现对人脸对象自动追踪。相较之前的非PID控制而言,系统运行会更顺滑一些。在本例中采用的命令参数输入的方式,可以方便有多个人脸识别级联分类器时随时切换。
  2. 当运行时,可能会有摄像头随机摆动的现象出现,这是因为人脸识别级联分类器的识别过程中的误识别,对于普通用户我们还无能为力,只能是避开经常被误该识别的物体。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/579021.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

QQ邮箱群发邮件怎么让对方不知道?如何单显

QQ邮箱群发邮件时只显示账号&#xff1f;邮件群发对方知道吗&#xff1f; QQ邮箱群发邮件功能为大量信息的传递提供了便利。但有时&#xff0c;我们希望在群发邮件时&#xff0c;不让对方轻易察觉到这是一封群发邮件。下面就让蜂邮为大家揭秘如何巧妙地使用QQ邮箱群发邮件&…

系统架构设计师笔记

第1章计算机组成与体系结构 1.1.1计算机硬件的组成 &#xff08;1&#xff09;控制器。控制器是分析和执行指令的部件&#xff0c;也是统一指挥并控制计算机各部件协调工作的中心部件&#xff0c;所依据的是机器指令。控制器的组成包含如下。 ①程序计数器PC&#xff1a;存储下…

docker搭建minio集群

一、环境准备 3台机器&#xff0c;Ip地址依次为IP1,IP2,IP3二、设置服务器时间同步 Minio集群需要各个节点的时间保持同步&#xff0c;使用NTP作为时间同步服务&#xff0c;这里以Minio-1&#xff08;IP1&#xff09;为上游服务器&#xff0c;其它2个节点为下游服务器&#x…

从零开始学大数据框架Hudi,这些学习网站,助你一臂之力!

介绍&#xff1a;Apache Hudi是一个开源的流数据湖平台&#xff0c;由Uber开发并现在已经成为Apache的顶级项目。Hudi的设计使得您可以在Hadoop兼容的存储之上存储大量数据&#xff0c;并且它提供了两种原语&#xff0c;除了经典的批处理之外&#xff0c;还可以在数据湖上进行流…

Vue - 文件导入组件封装

1 情景一 需求背景&#xff1a;导入本地表格数据到页面中表格&#xff0c;而页面中表格数据通过后端接口获取。 实现思路&#xff1a;弹窗嵌入 Element UI Upload 上传组件&#xff0c;获取到文件后调后端接口。 action: 上传的地址 file-list: 上传的文件列表, 例如: [{name…

Springboot静态资源与模板引擎Thymeleaf篇

一、导入静态资源 1.1 静态资源目录 只要静态资源放在类路径下&#xff1a; /static or /public or /resources or /META-INF/resources访问 &#xff1a; 当前项目根路径/ 静态资源名原理&#xff1a; 静态映射/**&#xff1b; "/**" 访问当前项目的任何资源 (静态…

Arduino平台软硬件原理及使用——按键模块(下拉电阻电路)的使用

文章目录 一、上拉电阻电路 二、下拉电阻电路 二、按键模块在Arduino中的使用 一、上拉电阻电路 如上图为上拉电阻电路的按键原理&#xff0c;VCC及GND分别为正负极&#xff0c;PIN接信号端口&#xff1b; 此时可实现的功能为&#xff1a; 按键未按下时PIN接收高电平信号&#…

知乎冷门蓝海项目,零门槛教你如何单日变现200+

顺哥轻创资源网 shundazy1 一、项目介绍&#xff1a; 通过知乎平台上传相关资料作品 用文章内容吸引用户&#xff0c;随后会下载我们准备好的资料作品 用户下载资料后&#xff0c;我们即可通过资料变现 总结起来就是软文引流配合链接变现的模式 我们团队实操下来单号每日…

智能监控平台/视频共享融合系统EasyCVR点击通道后页面分页不显示是什么原因?如何解决?

TSINGSEE青犀视频监控汇聚平台EasyCVR可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等&#xff0c;以及支持厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等。平台既具备传统安防视频监控的能力&…

API文档生成!超好用API调试工具

在数字化时代&#xff0c;API已经成为了应用程序之间进行通信的关键桥梁。随着API的普及和复杂性的增加&#xff0c;API研发和管理也面临着越来越多的挑战。为了更好地应对这些挑战&#xff0c;Apipost提供了一整套API研发工具&#xff0c;包括API设计、API调试、API文档和API自…

【算法学习】斐波那契数列模型-动态规划

前言 我在算法学习过程中&#xff0c;针对斐波那契数列模型的动态规划的例题进行了一个整理&#xff0c;并且根据标准且可靠一点的动态规划解题思路进行求解类似的动归问题&#xff0c;来达到学习和今后复习的必要。 所谓的斐波那契数列模型&#xff0c;即当前状态的值等于前两…

鸿蒙原生应用/元服务开发-Stage模型能力接口(十)上

ohos.app.form.FormExtensionAbility (FormExtensionAbility) FormExtensionAbility为卡片扩展模块&#xff0c;提供卡片创建、销毁、刷新等生命周期回调。 本模块首批接口从API version 9开始支持。后续版本的新增接口&#xff0c;采用上角标单独标记接口的起始版本。本模块接…

odoo17核心概念view5——ir_ui_view.py

这是view系列的第5篇文章&#xff0c;介绍一下view对应的后端文件ir_ui_view.py&#xff0c;它是base模块下的一个文件 位置&#xff1a;odoo\addons\base\models\ir_ui_view.py 该文件一共定义了三个模型 1.1 ir.ui.view.custom 查询数据库这个表是空的&#xff0c;从名字看…

云原生Kubernetes:K8S集群实现容器运行时迁移(docker → containerd) 与 版本升级(v1.23.14 → v1.24.1)

目录 一、理论 1.K8S集群升级 2.环境 3.升级策略 4.master1节点迁移容器运行时(docker → containerd) 5.master2节点迁移容器运行时(docker → containerd) 6.node1节点容器运行时迁移(docker → containerd) 7.升级集群计划&#xff08;v1.23.14 → v1.24.1&#…

接口文档设计的12个注意点

我们做后端开发的,经常需要定义接口文档。 最近在做接口文档评审的时候&#xff0c;发现一个小伙伴定义的出参是个枚举值&#xff0c;但是接口文档没有给出对应具体的枚举值。其实&#xff0c;如何写好接口文档&#xff0c;真的很重要。今天我给你带来接口文档设计的12个注意点…

OpenCV数字图像处理——基于目标边缘适用于目标部分遮挡或不同光照模板匹配

简介 模板匹配是一种常见的计算机视觉问题&#xff0c;通常用于在一张图像中查找特定的模板图像。在处理模板匹配时&#xff0c;经常会面临对象的姿态未知的情况&#xff0c;其中姿态包括位置&#xff08;X&#xff0c;Y坐标&#xff09;和旋转角度&#xff08;θ&#xff09;…

C++继承与派生——(3)公有继承的访问权限的变化

归纳编程学习的感悟&#xff0c; 记录奋斗路上的点滴&#xff0c; 希望能帮到一样刻苦的你&#xff01; 如有不足欢迎指正&#xff01; 共同学习交流&#xff01; &#x1f30e;欢迎各位→点赞 &#x1f44d; 收藏⭐ 留言​&#x1f4dd; 缺乏明确的目标&#xff0c;一生将庸庸…

linux cpu调度分析

一、cpu调度调试方法 echo 0 > /sys/kernel/debug/tracing/tracing_on echo > /sys/kernel/debug/tracing/trace echo 30720 > /sys/kernel/debug/tracing/buffer_size_kb echo nop > /sys/kernel/debug/tracing/current_tracer echo sched_switch sched_wakeup s…

Python 基础面试第三弹

1. 获取当前目录下所有文件名 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 import os def get_all_files(directory): file_list []<br> # <code>os.walk</code>返回一个生成器&#xff0c;每次迭代时返回当前目录路径、子目录列表和文件列表 for…

闲来无事,使用C++和代理IP采集天气预报信息

目录 一、引言 二、代理IP原理 三、选择合适的代理IP服务 四、C程序实现 五、测试与优化 六、结论 一、引言 在当今的互联网时代&#xff0c;网络信息的获取变得日益重要。天气预报信息作为日常生活的重要参考&#xff0c;其获取方式也随着技术的发展而不断变化。在本文…