Python 基础面试第三弹

1. 获取当前目录下所有文件名

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

import os

def get_all_files(directory):

    file_list = []<br>    # <code>os.walk</code>返回一个生成器,每次迭代时返回当前目录路径、子目录列表和文件列表

    for root, dirs, files in os.walk(directory):

        for file in files:

            file_list.append(os.path.join(root, file))

    return file_list

# 获取当前目录下的所有文件名

current_directory = os.getcwd()

files = get_all_files(current_directory)

# 打印所有文件名

for file in files:

    print(file)

2. Python中生成器和迭代器区别

迭代器(Iterator)是一种实现了迭代协议的对象,它必须提供一个__iter__()方法和一个__next__()方法。通过调用__iter__()方法,迭代器可以返回自身,并且通过调用__next__()方法,迭代器可以依次返回下一个元素,直到没有更多元素时抛出StopIteration异常。迭代器是一种惰性计算的方式,每次只在需要时生成一个元素,从而节省内存空间。可以使用iter()函数将可迭代对象转换为迭代器。

生成器(Generator)是一种特殊的迭代器,它使用了更为简洁的语法来定义迭代器。生成器可以通过函数中的yield关键字来实现,当函数执行到yield语句时,会暂停执行并返回一个值,保存当前状态,下次调用时从上次暂停的位置继续执行。生成器函数可以像普通函数一样接收参数,并且可以包含循环、条件语句等逻辑。生成器是一种非常方便和高效的迭代器实现方式。

下面是生成器和迭代器的区别总结:

  1. 语法:生成器使用yield关键字来定义,而迭代器需要实现__iter__()__next__()方法。
  2. 实现:生成器可以使用函数来定义,而迭代器可以由类来实现。
  3. 状态保存:生成器在yield语句处暂停执行并保存当前状态,下次调用时从上次暂停的位置继续执行;迭代器通过内部的状态和指针来保存迭代的位置。
  4. 简洁性:生成器的语法更加简洁,可以使用普通的函数定义和控制流语句;迭代器需要实现多个特殊方法,代码相对较多。
  5. 惰性计算:生成器是惰性计算的,每次只在需要时生成一个元素;迭代器也可以实现惰性计算,但需要手动控制。

总之,生成器是一种特殊的迭代器,它提供了更简洁和方便的语法。生成器可以通过函数中的yield语句来实现迭代过程,并且可以像普通函数一样编写逻辑。迭代器是一种更通用的概念,可以通过类来实现,需要显式地定义__iter__()__next__()方法。无论是生成器还是迭代器,它们都能够实现按需生成和处理大量数据的能力,提高了代码的效率和可读性。

 一个小栗子:

当我们需要遍历一个很大的数据集时,生成器可以帮助我们按需生成数据,而不是一次性加载整个数据集到内存中。

下面是一个简单的例子,我们使用生成器来按需生成斐波那契数列的前n个元素:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

def fibonacci_generator(n):

    a, b = 01

    count = 0

    while count < n:

        yield a

        a, b = b, a + b

        count += 1

# 使用生成器按需生成斐波那契数列的前10个元素

fibonacci = fibonacci_generator(10)

# 逐个打印生成的元素

for num in fibonacci:

    print(num)

    在上述代码中,我们定义了一个生成器函数fibonacci_generator,它使用了yield语句来生成斐波那契数列的元素。每次调用生成器的__next__()方法时,它会执行到yield语句处,

返回当前的斐波那契数并暂停执行,保存当前状态。然后,下次调用生成器的__next__()方法时,它会从上次暂停的位置继续执行,生成下一个斐波那契数。这样,我们可以通过迭代生成器

来按需获取斐波那契数列的元素。当我们遍历生成器对象时,它会依次生成斐波那契数列的元素并打印出来。由于生成器是按需生成数据的,它只在需要时生成一个元素,而不是一次性生成整

个数列。这样可以节省内存空间,特别是当斐波那契数列很大时。总结起来,生成器可以看作是一种特殊的函数,它能够按需生成数据,节省内存空间,并且提供了一种简洁和方便的方式来

实现迭代器。通过使用生成器,我们可以避免一次性加载大量数据到内存中,而是在需要时逐个生成数据,从而提高代码的效率和可扩展性。

3. 什么是可迭代对象,其原理又是什么

  可迭代对象(Iterable)是指可以被迭代遍历的对象。在许多编程语言中,迭代是指按照一定的顺序逐个访问集合中的元素的过程。在Python中,可迭代对象是指实现了迭代器协议(Iterator Protocol)的对象。

迭代器协议包含两个方法:

  1. __iter__()方法:该方法返回一个迭代器对象。迭代器对象用于实现具体的迭代逻辑,并且必须包含__next__()方法。

  2. __next__()方法:该方法返回迭代器中的下一个元素。如果没有元素可供返回,它应该引发StopIteration异常。

当我们使用可迭代对象进行迭代时,实际上是通过迭代器对象来完成的。迭代器对象负责追踪当前的迭代状态,并提供下一个元素。迭代器对象会在每次迭代时调用__next__()方法,并返回下一个元素,直到遍历完所有元素或者引发StopIteration异常为止。

Python中许多内置的数据类型和容器都是可迭代对象,例如列表(List)、元组(Tuple)、字典(Dictionary)、集合(Set)等。此外,我们也可以通过自定义类来实现可迭代对象,只需在类中定义__iter__()方法,并在该方法中返回一个迭代器对象即可。

以下是一个示例,展示了如何使用可迭代对象和迭代器对象进行迭代:

1

2

3

4

5

6

7

8

9

10

11

12

13

# 创建一个可迭代对象

my_list = [12345]

# 获取迭代器对象

my_iter = iter(my_list)

# 使用迭代器对象进行迭代

try:

    while True:

        item = next(my_iter)

        print(item)

except StopIteration:

    pass

  在上述示例中,我们通过调用iter()函数获取了my_list的迭代器对象my_iter,然后使用next()函数从迭代器对象中获取下一个元素并打印,直到遍历完所有元素或引发

StopIteration异常为止。可迭代对象的原理是基于迭代器协议的实现,通过迭代器对象的__next__()方法来提供序列中的下一个元素。这种机制使得我们可以方便地对集合中的元素

进行逐个访问和处理,提供了一种统一的迭代接口

自己实现可迭代对象小栗子

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

class MyIterable:

    def __init__(self, data):

        self.data = data

    def __iter__(self):

        self.index = 0

        return self

    def __next__(self):

        if self.index < len(self.data):

            item = self.data[self.index]

            self.index += 1

            return item

        else:

            raise StopIteration

# 创建一个可迭代对象实例

my_iterable = MyIterable([12345])

# 使用迭代器进行迭代

for item in my_iterable:

    print(item)

4. Python2 和 Python3主要的区别有哪些:

Python 2.x 和 Python 3.x 之间的一些主要区别:

  1. 打印函数:在 Python 2.x 中,打印语句是一个关键字,使用类似于 print "Hello" 的语法。而在 Python 3.x 中,print 被改造为一个内置函数,需要使用括号,例如 print("Hello")

  2. 整数除法:在 Python 2.x 中,整数除法的结果会被截断为整数,例如 5 / 2 的结果是 2。而在 Python 3.x 中,整数除法的结果将保留小数部分,得到浮点数结果,例如 5 / 2 的结果是 2.5。如果想要执行截断整数除法,可以使用 // 运算符。

  3. Unicode 字符串:在 Python 2.x 中,字符串类型分为普通字符串和 Unicode 字符串(以 u 前缀表示),这导致字符串处理的一些混乱和困惑。而在 Python 3.x 中,所有字符串都是 Unicode 字符串,普通字符串是以字节表示的,需要使用 b 前缀表示。

  4. xrange 替代 range:在 Python 2.x 中,range 函数返回的是一个列表,如果需要生成大范围的整数序列,会占用大量内存。而在 Python 3.x 中,range 函数的实现类似于 Python 2.x 中的 xrange,返回一个迭代器对象,节省了内存。

  5. 异常语法:在 Python 2.x 中,捕获异常时使用的语法是 except Exception, e,将异常对象存储在变量 e 中。而在 Python 3.x 中,使用 except Exception as e 的语法,将异常对象存储在变量 e 中。

  6. input 函数:在 Python 2.x 中,input 函数会将用户输入的内容作为 Python 代码进行解析,存在安全风险。而在 Python 3.x 中,input 函数始终将用户输入的内容作为字符串返回,不进行解析。

除了上述主要区别之外,Python 3.x 还进行了一些其他改进,包括改进的类定义语法、更好的模块管理和导入机制、更一致的异常处理和错误机制等。然而,这也导致了 Python 2.x 代码无法直接在 Python 3.x 中运行,需要进行一些修改和调整。

5. 说说Python中多线程和多进程

  1. 多线程(Multithreading):

    • 多线程是指在一个进程内创建多个线程,每个线程独立执行不同的任务。多线程共享进程的内存空间,因此线程之间可以方便地共享数据。
    • 在 Python 中,可以使用 threading 模块来创建和管理线程。通过创建 Thread 类的实例,指定要执行的函数或方法,并调用 start() 方法,可以启动一个线程。
    • Python 的多线程由于全局解释器锁(Global Interpreter Lock,GIL)的存在,同一时刻只允许一个线程执行 Python 字节码。这意味着多线程并不能充分利用多核处理器,并发性能受限。多线程适用于 I/O 密集型任务,如网络请求、文件读写等,但对于 CPU 密集型任务,多线程并不能提升性能。
  2. 多进程(Multiprocessing):

    • 多进程是指创建多个独立的进程,每个进程都有自己的内存空间和系统资源。多个进程之间相互独立,可以并行执行不同的任务。每个进程都有自己的 Python 解释器,因此可以充分利用多核处理器,提高并发性能。
    • 在 Python 中,可以使用 multiprocessing 模块来创建和管理进程。通过创建 Process 类的实例,指定要执行的函数或方法,并调用 start() 方法,可以启动一个进程。
    • 多进程可以通过进程间通信(Inter-Process Communication,IPC)来实现进程之间的数据共享。Python 提供了多种 IPC 机制,如队列(Queue)、管道(Pipe)和共享内存等。

总结:

  • 多线程适合处理 I/O 密集型任务,可以提高程序的响应能力和效率。
  • 多进程适合处理 CPU 密集型任务,可以充分利用多核处理器提高并发性能。
  • 在 Python 中,多线程受到 GIL 的限制,多进程可以绕过 GIL,实现真正的并行执行。
  • 使用多线程或多进程时需要注意线程安全和进程安全的问题,避免数据竞争和共享资源的冲突。

6. Python中GIL锁:

  全局解释器锁(Global Interpreter Lock,简称 GIL)是在 CPython 解释器中存在的一个特性。它是一种机制,用于保证同一时刻只有一个线程执行 Python 字节码。虽然 GIL 的存在确保了 CPython 解释器的线程安全性,但也对多线程并发执行带来了一些限制。

以下是对 GIL 的一些详细解释和理解:

  1. GIL 的作用:

    • GIL 的主要作用是保护 CPython 解释器内部的数据结构免受并发访问的影响,确保线程安全。
    • CPython 使用引用计数(Reference Counting)作为内存管理的主要机制。GIL 保证了在修改引用计数时的原子性,避免了竞态条件(Race Condition)和内存泄漏问题。
    • GIL 还可以简化 CPython 解释器的实现,使其更加简单高效。
  2. GIL 的影响:

    • 由于 GIL 的存在,同一时刻只有一个线程可以执行 Python 字节码,其他线程被阻塞。这意味着多线程并不能充分利用多核处理器,无法实现真正的并行执行。
    • 对于 CPU 密集型任务,由于 GIL 的限制,多线程并不能提升性能。实际上,由于线程切换的开销,可能导致多线程执行速度比单线程还要慢。
    • GIL 对于 I/O 密集型任务的影响相对较小,因为线程在进行 I/O 操作时会主动释放 GIL,允许其他线程执行。因此,多线程在处理 I/O 操作时仍然可以提供一定的性能优势。
  3. 解决 GIL 的方法:

    • 采用多进程:由于每个进程都有独立的 Python 解释器和 GIL,多进程可以充分利用多核处理器,实现并行执行。
    • 使用扩展模块:某些扩展模块,如 NumPy、Pandas 等,使用 C/C++ 编写,可以释放 GIL,允许多线程并行执行。
    • 使用多线程库:一些第三方库,如 multiprocessing 模块、concurrent.futures 模块等,提供了替代方案,使得在某些情况下可以绕过 GIL 的限制。

需要注意的是,GIL 只存在于 CPython 解释器中,而其他实现(如 Jython、IronPython)可能没有 GIL。此外,对于许多类型的应用程序,如 I/O 密集型、并发处理不频繁的应用程序,GIL

的影响较小,可以继续使用多线程来实现并发。然而,对于 CPU 密集型任务和需要充分利用多核处理器的应用程序,考虑使用多进程或其他解决方案来规避 GIL。

最后感谢每一个认真阅读我文章的人,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:

这些资料,对于【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴上万个测试工程师们走过最艰难的路程,希望也能帮助到你!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/578998.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

闲来无事,使用C++和代理IP采集天气预报信息

目录 一、引言 二、代理IP原理 三、选择合适的代理IP服务 四、C程序实现 五、测试与优化 六、结论 一、引言 在当今的互联网时代&#xff0c;网络信息的获取变得日益重要。天气预报信息作为日常生活的重要参考&#xff0c;其获取方式也随着技术的发展而不断变化。在本文…

JVisualVM工具的使用⭐️并使用自带JDBC监控sql语句执行时间记录

小伙伴们大家好&#xff0c;今天使用了继Jconsole工具之外的另一个JDK自带的性能分析工具 目录 一、JVisualVm 简介 二、使用 三、菜单使用 章末 一、JVisualVm 简介 JVisualVM是Java VisualVM的简称&#xff0c;是一个集成了多个 JDK 自带监控和故障处理工具的图形化工具…

MySQL的替换函数及补全函数的使用

前提&#xff1a; mysql的版本是8.0以下的。不支持树形结构递归查询的。但是&#xff0c;又想实现树形结构的一种思路 提示&#xff1a;如果使用的是MySQL8.0及其以上的&#xff0c;想要实现树形结构&#xff0c;请参考&#xff1a;MySQL数据库中&#xff0c;如何实现递归查询…

基于BaseHTTPRequestHandler的HTTP服务器基础实现

1. BaseHTTPRequestHandler介绍 BaseHTTPRequestHandler是Python中的一个基类&#xff0c;属于http.server模块&#xff0c;用于处理HTTP请求的基本功能。它提供了处理常见HTTP请求方法&#xff08;如GET、POST等&#xff09;的默认实现&#xff0c;并允许你在子类中进行定制化…

2024年【道路运输企业安全生产管理人员】考试题及道路运输企业安全生产管理人员报名考试

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 道路运输企业安全生产管理人员考试题考前必练&#xff01;安全生产模拟考试一点通每个月更新道路运输企业安全生产管理人员报名考试题目及答案&#xff01;多做几遍&#xff0c;其实通过道路运输企业安全生产管理人员…

day42 1226

作业1&#xff1a; #include <iostream>using namespace std;namespace myspace {string str; }int length(string str) {//char *p &str.at(0);const char *p str.data();int count 0;while (*p ! 0) {p;count;}return count; } int main() {getline(cin,myspac…

2023年数据泄露态势年度报告

为了掌握数据泄露态势&#xff0c;应对日益复杂的安全风险&#xff0c;零零信安基于0.zone安全开源情报系统&#xff0c;发布《数据泄露态势》年度报告。该系统监控范围包括明网、深网、暗网、匿名社群等约10万个威胁源。除此之外还会针对一些典型的数据泄露事件进行抽样事件分…

【HTML5】第2章 HTML5标签和属性

学习目标 掌握文本控制标签的用法&#xff0c;能够使用文本控制标签设置文本样式。 掌握图像标签的用法&#xff0c;能够使用图像标签在网页中嵌入图片。 掌握超链接标签的用法&#xff0c;能够使用超链接实现页面的跳转。 掌握列表标签的用法&#xff0c;能够使用列表标签设…

论文解读--Compressed Sensing for MIMO Radar - Algorithms and Performance

MIMO雷达压缩感知-算法和性能 摘要 压缩感知技术使得利用雷达场景的稀疏性来潜在地提高系统性能成为可能。本文将压缩感知工具应用于MIMO雷达&#xff0c;在方位-距离-多普勒域重构场景。推导了雷达波形和发射、接收阵列的条件&#xff0c;使雷达传感矩阵具有小相干性和稀疏恢…

这是我见过最强的单点登录认证系统!

来源&#xff1a;mp.weixin.qq.com/s/6jXz23nwU… 项目介绍 MaxKey 单点登录认证系统&#xff0c;谐音马克思的钥匙寓意是最大钥匙&#xff0c;支持 OAuth 2.x/OpenID Connect、SAML 2.0、JWT、CAS、SCIM 等标准协议&#xff0c;提供简单、标准、安全和开放的用户身份管理(ID…

LeetCode 剑指 Offer II 054. 所有大于等于节点的值之和

给定一个二叉搜索树&#xff0c;请将它的每个节点的值替换成树中大于或者等于该节点值的所有节点值之和。 提醒一下&#xff0c;二叉搜索树满足下列约束条件&#xff1a; 节点的左子树仅包含键 小于 节点键的节点。 节点的右子树仅包含键 大于 节点键的节点。 左右子树也必须…

账号和权限管理

大家无论安装完linux系统和windows系统后&#xff0c;都会要求你去新建一个用户去登录&#xff0c;不会让你们直接使用超级管理员身份去登录自己的系统&#xff0c;这样是为了安全性的考虑。 一、用户账号和组账号概述 1、用户账号类型&#xff1a; linux用户账号类型&#x…

redis主从扩容案例

redis3主3从&#xff0c;请参见&#xff1a;https://blog.csdn.net/weixin_49456013/article/details/134930716?spm1001.2014.3001.5501 现在需要进行扩容&#xff0c;变成4主4从&#xff0c;主要步骤如下&#xff1a; 1.新建6387、6388两个节点并启动 docker run -d --na…

DAY1C++

1、思维导图 2.定义自己的命名空间myspace&#xff0c;并在myspace中定义一个字符串&#xff0c;实现求字符串大小的函数。 #include <iostream>using namespace std;namespace myspace{string s1("call your name");int len_s(string s){return s1.length();…

ARM12.26

整理三个按键中断代码 key_it.h #ifndef __KEY_IT_H__ #define __KEY_IT_H__ #include"stm32mp1xx_gpio.h" #include"stm32mp1xx_gic.h" #include"stm32mp1xx_exti.h" #include"stm32mp1xx_rcc.h" #include"led.h" void k…

基于程序UKM_RFDKLI20的信贷释放增强

一、概述 业务背景&#xff0c;项目中&#xff0c;针对信贷控制客户&#xff0c;业务单据在营销中台&#xff08;CRM&#xff09;中处理&#xff0c;但是信贷控制需依托SAP的信贷管理功能&#xff0c;因此功能设计为营销中台创建交货单&#xff0c;并同步至SAP判断信贷&#x…

【支持向量机】SVM线性可分支持向量机学习算法——硬间隔最大化支持向量机及例题详解

支特向量机(support vector machines, SVM)是一种二类分类模型。它的基本模型是定义在特征空间上的间隔最大的线性分类器。包含线性可分支持向量机、 线性支持向量机、非线性支持向量机。 当训练数据线性可分时&#xff0c;通过硬间隔最大化学习线性分类器&#xff0c; 即为线性…

开箱即用之U盘安装centos7系统详细教程

一、事先准备工具 U盘一个&#xff0c;大小起码要比需要安装刻录的镜像大。 需要安装的centos镜像&#xff0c;可以在官网自行下载。 二、安装步骤 将下载好的镜像包放入到U盘中。 在开机时按照不同品牌的电脑&#xff0c;点击不同的快捷键进入装机。 部分启动快捷键大全对…

围栏中心点

后端返回的数据格式是 [{height: 0,lat: 30.864277169098443,lng:114.35252972024682}{height: 1,lat: 30.864277169098443,lng:114.35252972024682}.........]我们要转换成 33.00494857612568,112.53886564762979;33.00307854503083,112.53728973842954;33.00170296814311,11…