【ScienceAI Weekly】DeepMind最新研究再登Nature;我国首个自研地球系统模型开源;谷歌推出医疗保健模型

AI for Science 的新成果、新动态、新视角抢先看——

* DeepMind 最新研究 FunSearch 登 Nature

* 谷歌推出医疗保健行业模型 MedLM

* 晶泰科技冲刺港交所,AI+机器人赋能 AI for Science

* GHDDI 与微软研究院科学智能中心达成合作

* 用于地震学处理分析的 AI 工具开源

* 我国首个自主研发的地球系统模型宣布开源

* 百度飞桨螺旋桨团队构建蛋白质-小分子对接构象预测模型 HelixDock

* 国内研究团队公开基于混合机器学习的碳排放预测方法及系统

* 苹果芯片「专属定制版」机器学习框架开源

更多内容详见下文~

企业动态

DeepMind 最新研究 FunSearch 登「Nature」

谷歌 DeepMind 最新研究 FunSearch 是一种搜索数学和计算机科学新解决方案的方法。FunSearch 的工作原理是将预先训练好的大模型 (LLM) 与自动「评估器」配对使用,前者的目标是以计算机代码的形式提供创造性的解决方案,后者则负责防止出现幻觉和不正确的想法。通过这两个组件之间的来回迭代,初始解决方案「进化」为新知识。FunSearch 发现了上限集问题的新解决方案,这是数学领域的一个长期未决问题,代表了利用大模型首次发现科学或数学领域具有挑战性的开放问题。论文地址:http://nature.com/articles/s41586-023-06924-6

谷歌推出医疗保健行业模型 MedLM

近日,谷歌宣布推出一套新的医疗保健专用人工智能模型 MedLM,旨在帮助临床医生和研究人员进行复杂的研究、总结医患互动等。这一举措标志着谷歌将医疗保健行业人工智能工具货币化的最新尝试,也是医疗行业数字化转型的一个重要里程碑。首先,MedLM 能够帮助临床医生和研究人员进行复杂的研究和数据分析,提高医疗诊断的准确性和效率。其次,MedLM 能够总结医患互动,为医生提供更好的患者管理和服务体验。此外,MedLM 还能够为医疗保健机构提供更好的数据管理和分析工具,提高医疗资源的利用效率。

晶泰科技冲刺港交所,AI+机器人赋能 AI for Science

QuantumPharm Inc. (晶泰科技) 于上月正式向港交所递交招股说明书,拟以 18C 规则主板挂牌上市。18C 规则主要针对特专科技公司,对于行业的科技属性要求较高,涉及新一代信息技术、先进硬件及软件、先进材料、新能源及节能环保、新食品及农业技术等行业领域。晶泰科技是全球少数同时拥有基于量子物理的第一性原理计算、先进的人工智能技术及自动化湿实验室能力的药物及材料科学研发公司之一,也是全球少有的量子物理+AI+自动化驱动的药物及材料科学研发平台之一。

GHDDI 与微软研究院科学智能中心达成合作

近日,全球健康药物研发中心 (Global Health Drug Discovery Institute, GHDDI) 与微软研究院科学智能中心 (Microsoft Research AI4Science) 宣布达成合作,双方将共同研发全球健康传染病领域的生成式人工智能与基础大模型技术,聚焦落地转化,加速创新药物研发。此前,双方已成功在结核分枝杆菌以及冠状病毒关键靶蛋白的研究中设计出多种全新结构的小分子抑制剂。

百奥几何与智谱AI共建自然语言-生命语言多模态大模型

北京百奥几何生物科技有限公司和北京智谱华章科技有限公司近日宣布达成战略合作,共同致力于建设自然语言-生命语言多模态大模型。该模型预期将增进生成式人工智能平台在生命科学与医药研究领域的实用性。

工具资源

用于地震学处理分析的 AI 工具开源

用于地震学处理分析的开源工具,目前包括:震相拾取、极化、频散提取。工具已经开源中国地区 100Hz 模型,部分模型基于 CSNCD 数据集训练,PgSgPnSn 四种震相的拾取模型精度最高。访问地址:https://gitee.com/cangyeone/seismological-ai-tools

我国首个自主研发的地球系统模型宣布开源

日前,中国科学院大气物理研究所发布了我国首个具有自主知识产权的「完整」地球系统数值模型,并宣布释放其源代码。这套模型包含完整的气候系统和生态环境系统,集成了大气环流、海洋环流等 8 个分系统模式,同时也是国家重大科技基础设施「地球系统数值模拟装置」的核心软件,总计约270万行程序代码,被称为「地球实验室」。

百度飞桨螺旋桨团队构建蛋白质-小分子对接构象预测模型 HelixDock

百度飞桨螺旋桨团队通过构建大规模的模拟数据集、升级基于几何的神经网络等手段,构建蛋白质-小分子对接构象预测模型 HelixDock,大幅度提升了构象预测的准确度。更多结果详见HelixDock文章:https://arxiv.org/abs/2310.13913
飞桨螺旋桨访问地址:https://paddlehelix.baidu.com/

国内研究团队公开基于混合机器学习的碳排放预测方法及系统

国内研究团队公开了一种基于混合机器学习的碳排放预测方法及系统,通过目标组合模型对数据集合进行处理,得到碳排放预测结果;其中,目标组合模型为通过目标计算权重实现了将单变量时序预测和多变量驱动因素模型进行最优加权组合,兼顾各个模型的优点,提升了碳排放预测的准确性。访问地址:https://cprs.patentstar.com.cn/Search/Detail?ANE=9HFF9IBA9GDC5BCA8GBA9FHE9AHA8BCA9DFB9CFF9GFF7BDA

苹果芯片「专属定制版」机器学习框架开源

MLX 是一个专为苹果芯片设计的机器学习框架(点击查看详细解读),旨在保证用户友好的前提下,支持高效地在苹果芯片上训练及部署模型。其设计理念简单,参考了 NumPy、PyTorch、Jax 和 ArrayFire 等框架,包括延迟计算 (Lazy computation)、动态图构建等关键功能。访问地址:https://github.com/ml-explore/mlx/tree/main/examples

科研成果DANTE :面向大规模光电智能计算

Training large-scale optoelectronic neural networks with dual-neuron optical-artificial learning

来源:Nature Communications

领域:神经网络,光电智能

作者:清华大学电子工程系方璐课题组

研究团队提出了面向大规模光电智能计算的光学-人工双神经元学习架构 (DuAl-Neuron opTical-artificial lEarning,DANTE)。其中光学神经元精准建模光场计算过程,人工神经元以轻量映射函数建立跳跃连接助力梯度传播,全局人工神经元与局部光学神经元以交替学习的机制进行迭代优化,在确保学习有效性的同时,大大降低了训练的时空复杂度,使得训练更大更深的光电神经网络成为可能。

阅读原文:https://www.nature.com/articles/s41467-023-42984-y

卷积神经网络框架 PtyNet :同步辐射海量数据处理

An efficient ptychography reconstruction strategy through fine-tuning of large pre-trained deep learning model

来源:iScience

领域:数据挖掘,卷积神经网络

作者:中国科学院团队

研究团队开发了一个名为 PtyNet 的卷积神经网络框架,用于从 X 射线 Ptychography 实验数据中恢复出物体的精确投影。在强大的计算集群的支持下,PtyNet 可以快速地从同步辐射光源获取数据进行训练,并快速地对用户的实验数据进行图像重建。

阅读原文:https://doi.org/10.1016/j.isci.2023.108420

通过序列聚类和 AlphaFold2 预测多种构象

Predicting multiple conformations via sequence clustering and AlphaFold2

来源:Nature

领域:生物信息学

作者:布兰迪斯大学和霍华德·休斯医学研究所、哈佛大学和剑桥大学的研究团队

研究团队通过序列相似性对多序列比对 (MSA) 进行聚类,使 AF2 能够以高置信度对已知变形蛋白 (metamorphic protein) 的交替状态进行采样。同时,研究人员使用 AF-Cluster 方法,研究了变形蛋白 KaiB5 的预测结构的进化分布,发现两种构象的预测都分布在 KaiB 家族的簇中。

阅读原文:

https://www.nature.com/articles/s41586-023-06832-9

ProRefiner:逆向蛋白质折叠设计模型

ProRefiner: an entropy-based refining strategy for inverse protein folding with global graph attention

来源:Nature Communications

领域:生物基因,深度学习

作者:香港中文大学、之江实验室、华为诺亚方舟实验室和南京医科大学研究团队

研究团队引入了 ProRefiner,一种内存高效 (memory-efficient) 的全局图注意力模型,可以充分利用去噪上下文,并且证明了 ProRefiner 在重新设计转座子相关转座酶 B (TnpB) 方面的适用性,提出的 20 个变体中有 6 个表现出改进的基因编辑活性。

阅读原文:https://www.nature.com/articles/s41467-023-43166-6

KPGT:自监督学习框架

A knowledge-guided pre-training framework for improving molecular representation learning

来源:Nature Communications

领域:生物分子,药物发现

作者:清华大学、西湖大学和之江实验室研究团队

研究团队提出了知识引导的图 Transformer 预训练 (Knowledge-guided Pre-training of Graph Transformer,KPGT),这是一种自监督学习框架,通过显著增强的分子表征学习提供改进的、可泛化和稳健的分子特性预测。KPGT 框架集成了专为分子图设计的图 Transformer 和知识引导的预训练策略,以充分捕获分子的结构和语义知识。阅读原文:https://www.nature.com/articles/s41467-023-43214-1

活动回顾

CoRL 大会落幕,最佳论文、最佳系统论文公布

2023 年的 Conference on Robot Learning (CoRL) 大会于上月在美国亚特兰大举行。据官方数据透露,今年来自 25 个国家的 199 篇论文入选 CoRL,热门主题包括 manipulation、强化学习等。

其中,最佳论文奖为「Distilled Feature Fields Enable Few-Shot Language-Guided Manipulation」

作者:William Shen, Ge Yang, Alan Yu, Jensen Wong, Leslie Pack Kaelbling, Phillip Isola

机构:MIT CSAIL、IAIFI

阅读原文:https://openreview.net/forum?id=Rb0nGIt_kh5
其他奖项详见官网:https://www.corl2023.org/awards

NASSMA 2022 AI4Science 研讨会干货分享

该研讨会由 NASSMA、穆罕默德六世理工大学及 Google Deepmind 等机构共同组织。目前,研讨会的演讲 PPT 及直播回放已上线。

以上就是「Science AI Weekly」本期要分享的所有内容了~

如果你有关于 AI for Science 的最新研究成果、企业一手信息等,欢迎留言「爆料」。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/577627.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【华为机试】2023年真题B卷(python)-分月饼

一、题目 题目描述&#xff1a; 中秋节公司分月饼&#xff0c;m个员工&#xff0c;买了n个月饼&#xff0c;m<n&#xff0c;每个员工至少分1个月饼&#xff0c;但可以分多个&#xff0c;单人份到最多月饼的个数为Max1&#xff0c;单人分到第二多月饼的个数是Max2&#xff0c…

python(上半部分)

第一部分 1、input()语句默认结果是字符串 2、type()可以判断变量的类型 3、input()输出语句 &#xff08;默认为字符串类型&#xff09; 4、命名规则&#xff1a;中文、英文、数字、_&#xff0c;数字不可开头&#xff0c;大小写敏感。 5、 %s&#xff1a;将内容转换成…

Java并发(二十一)----wait notify介绍

1、小故事 - 为什么需要 wait 由于条件不满足&#xff08;没烟干不了活啊&#xff0c;等小M把烟送过来&#xff09;&#xff0c;小南不能继续进行计算 但小南如果一直占用着锁&#xff0c;其它人就得一直阻塞&#xff0c;效率太低 于是老王单开了一间休息室&#xff08;调…

vue场景 无分页列表条件过滤,子组件多选来自父组件的列表

日常开发中&#xff0c;经常会遇到下面场景&#xff1a; 页面加载一个无分页列表&#xff0c;同时工具栏设置多个条件可对列表过滤的场景(典型的就是关键字模糊查询)父组件传给子组件列表&#xff0c;子组件中需要多选列表多选&#xff0c;选择结果返回父组件 1 无分页列表过…

行业首台7英寸彩屏,掌阅iReader Color 7 发布

12月22日消息&#xff0c;掌阅iReader 继2021年发布 C6 Pro 后&#xff0c;时隔2年再次推出彩屏系列新产品 Color 7&#xff0c;该产品为彩色电子纸智能阅读本&#xff0c;采用 Kaleido3 新一代彩色电子纸技术&#xff0c;黑白像素密度为 300PPI &#xff0c;彩色像素密度为 15…

并发程序设计--D1进程的创建和回收

进程和程序内容区别 进程包含的内容&#xff1a; BSS段&#xff1a;存放程序中未初始化的全局变量 数据段&#xff1a;已初始化的全局变量 代码段&#xff1a;程序执行代码 堆&#xff08;heap&#xff09;&#xff1a;malloc等函数分配内存 栈(stack)&#xff1a;局部变量…

让学习成为一种生活方式:数字化助力终身学习

12月以来,“让学习成为一种生活方法”全民终身学习活动在北京、安徽、湖北、湖南、云南等地密集启动,而依托数字化赋能终身学习成为共同关键词。 近年来,随着教育现代化体系的不断深入推进,数字化转型成为建设高质量终身学习体系的重要“推动力”,数字技术与大数据的应用汇聚了…

2023新能源汽车,吵得越凶,卖得越多

作者 | 辰纹 来源 | 洞见新研社 2023年的汽车行业很残酷&#xff0c;合资大败退&#xff0c;市场份额被自主品牌大幅渗透&#xff0c;三菱退出中国市场&#xff0c;成为真实写照。 新能源车企&#xff0c;威马领头&#xff0c;天际、自游家NIUTRON、恒驰、爱驰、雷丁等造车新…

如何学习VBA_3.2.10:人机对话的实现

我给VBA的定义&#xff1a;VBA是个人小型自动化处理的有效工具。利用好了&#xff0c;可以大大提高自己的劳动效率&#xff0c;而且可以提高数据处理的准确度。我推出的VBA系列教程共九套和一部VBA汉英手册&#xff0c;现在已经全部完成&#xff0c;希望大家利用、学习。 如果…

智能优化算法应用:基于斑马算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于斑马算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于斑马算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.斑马算法4.实验参数设定5.算法结果6.参考文献7.MA…

算法导论复习(三)

这一次我们主要复习的是递归式求解 递归式求解主要有的是三种方法&#xff1a; 代换法递归树法主方法 我们进行处理的时候要 代换法 方法讲解 主要就是猜测答案的形式 我们只在乎 n 在无穷大的时候成立就行 关于答案的形式&#xff0c;我发现最后能够是 n log n 的形式的…

SUS-Chat-34B领先一步:高效双语AI模型的突破

引言 在人工智能领域&#xff0c;模型的规模和效能一直是衡量其先进性的关键指标。南方科技大学联合IDEA研究院CCNL团队最新开源的SUS-Chat-34B模型&#xff0c;以其340亿参数的庞大规模和卓越的双语处理能力&#xff0c;在AI界引起了广泛关注。 模型概述 SUS-Chat-34B是基于…

在VSCode中使用Git教程

文章目录 提交代码操作分支提交远程库拉取代码参考 介绍一下如何在VSCode中使用Git 首先在VSCode中打开一个项目 打开项目后, 点击下图按钮, 可以引入Git 提交代码 点击 &#xff1b;相当于git add. 下面两张图, 第一张表示改文件后的号, 只会add本文件. 第二张图表示这段时…

linux系统和网络(四):网络

本文主要探讨linux网络相关知识,详细介绍看本博客其他博文。 网络基础(参考本博客其他文章&#xff1a;基础网络知识&#xff0c;socket网络编程&#xff0c;基于socket的聊天室和简易ftp) 路由器是局域网和外部网络通信出入口 DNS实现域名和IP地址之间转换 …

Ai画板原理

在创建时画板可以选择数量和排列方式 也可以采用这个图片左上的画板工具&#xff0c;选择画板在其他地方画框即可生成&#xff0c;同时可以在属性框中可以修改尺寸大小 选择全部重新排列可以进行创建时的布局

uniapp创建/运行/发布项目

1、产生背景----跨平台应用框架 在移动端各大App盛行的时代&#xff0c;App之间的竞争也更加激烈&#xff0c;他们执着于让一个应用可以做多个事情 所以就应运而生了小程序&#xff0c;微信小程序、支付宝小程序、抖音小程序等等基于App本身的内嵌类程序。 但是各大App他不可…

VTK+QT配置(VS)

先根据vtk配置这个博客配置基本环境 然后把这个dll文件从VTK的designer目录复制到qt的对应目录里 记得这里是debug版本&#xff0c;你也可以配置release都一样的步骤&#xff0c;然后建立一个qt项目&#xff0c;接着配置包含目录&#xff0c;库目录&#xff0c;链接输入&…

智能优化算法应用:基于厨师算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于厨师算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于厨师算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.厨师算法4.实验参数设定5.算法结果6.参考文献7.MA…

Java中synchronized锁升级过程是什么样的

参考文章一 参考文章二 参考文章三 在Java中&#xff0c;对象锁的状态是为了减少同步操作的开销而设计的&#xff0c;主要包括无锁、偏向锁、轻量级锁和重量级锁几个级别。锁的状态会随着竞争情况的不同而升级&#xff0c;但是不会降级。以下是锁状态的一般升级过程&#xff1…

将mapper.xml保存为idea的文件模板

将mapper.xml保存为idea的文件模板 在idea的File and Code Templates中将需要使用模板的内容添加为模板文件。 那么接下来请看图&#xff0c;跟着步骤操作吧。 mapper.xml文件内容 <?xml version"1.0" encoding"UTF-8"?> <!DOCTYPE mapper P…