05|提示工程(下):用思维链和思维树提升模型思考质量 ## 什么是 Chain of Thought

05|提示工程(下):用思维链和思维树提升模型思考质量

什么是 Chain of Thought

CoT 这个概念来源于学术界,是谷歌大脑的 Jason Wei 等人于 2022 年在论文《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models(自我一致性提升了语言模型中的思维链推理能力)》中提出来的概念。它提出,如果生成一系列的中间推理步骤,就能够显著提高大型语言模型进行复杂推理的能力。

Few-Shot CoT

Few-Shot CoT 简单的在提示中提供了一些链式思考示例(Chain-of-Thought Prompting),足够大的语言模型的推理能力就能够被增强。简单说,就是给出一两个示例,然后在示例中写清楚推导的过程。

img

图片来源论文

论文中给出了一个大模型通过思维链做数学题的示例。图左和图右,大模型都读入了 OneShot 示例,但是图左只给出了答案,而图右则在 OneShot 示例中给出了解题的具体思路。结果,只给出了答案的模型推理错误,而给出解题思路后,同一个模型生成了正确的答案。

在三种大型语言模型的实验中,CoT 在一系列的算术、常识和符号推理任务中都提高了性能。在 GSM8K 数学问题基准测试中,通过 CoT 指导后,大模型的表现可以达到当时最先进的准确性。

CoT 从概念上非常容易理解,从应用上非常容易操作。虽然简单,但这种思想可以给我们的开发过程带来很多启发。

比如,假设我们正在开发一个 AI 花店助手,它的任务是帮助用户选择他们想要的花,并生成一个销售列表。在这个过程中,我们可以使用 CoT 来引导 AI 的推理过程。

👉 整体指导:你需要跟着下面的步骤一步步的推理。

  1. 问题理解:首先,AI 需要理解用户的需求。例如,用户可能会说:“今天要参加朋友的生日 Party,想送束花祝福她。”我们可以给 AI 一个提示模板,里面包含示例:“遇到 XX 问题,我先看自己有没有相关知识,有的话,就提供答案;没有,就调用工具搜索,有了知识后再试图解决。”—— 这就是给了 AI 一个思维链的示例。
  2. 信息搜索:接下来,AI 需要搜索相关信息。例如,它可能需要查找哪些花最适合生日派对。
  3. 决策制定:基于收集到的信息,AI 需要制定一个决策。我们可以通过思维链让他详细思考决策的流程,先做什么后做什么。例如,我们可以给它一个示例:“遇到生日派对送花的情况,我先考虑用户的需求,然后查看鲜花的库存,最后决定推荐一些玫瑰和百合,因为这些花通常适合生日派对。”—— 那么有了生日派对这个场景做示例,大模型就能把类似的思维流程运用到其它场景。
  4. 生成销售列表:最后,AI 使用 OutputParser 生成一个销售列表,包括推荐的花和价格。

在这个过程中,整体上,思维链引导 AI 从理解问题,到搜索信息,再到制定决策,最后生成销售列表。这种方法不仅使 AI 的推理过程更加清晰,也使得生成的销售列表更加符合用户的需求。具体到每一个步骤,也可以通过思维链来设计更为详细的提示模板,来引导模型每一步的思考都遵循清晰准确的逻辑。

其实 LangChain 的核心组件 Agent 的本质就是进行好的提示工程,并大量地使用预置的 FewShot 和 CoT 模板。这个在之后的课程学习中我们会理解得越来越透彻。

Zero-Shot CoT

下面的这两个 CoT 提示模板的例子,来自于 Google Research 和东京大学的论文《大语言模型是零样本推理者》。

图中的(d)示例非常非常有意思,在 Zero-Shot CoT 中,你只要简单地告诉模型“让我们***一步步的思考***(Let’s think step by step)”,模型就能够给出更好的答案!

img

图片来源论文

哈哈哈,这样太神奇了吧,这不由得让我联想起最简单的提示工程,角色设定——模型回答之前,先告诉它“你是一个很有经验的 XX 专家”,模型应该就会在开始胡说八道之前三思。

简单总结一下:Few-Shot CoT,指的就是在带有示例的提示过程中,加入思考的步骤,从而引导模型给出更好的结果。而 Zero-Shot CoT,就是直接告诉模型要一步一步地思考,慢慢地推理。

Chain of Thought 实战

现在,就让我带着你完成一次 Chain of Thought 的 LangChain 应用开发实战。

项目需求:在这个示例中,你正在开发一个 AI 运营助手,我们要展示 AI 如何根据用户的需求推理和生成答案。然后,AI 根据当前的用户请求进行推理,提供了具体的花卉建议并解释了为什么选择这些建议。

在这个过程中,AI 需要理解客户的需求之后,按部就班的思考,然后给出最符合逻辑的回答。

CoT 的模板设计

针对这个聊天机器人的需求,我设计了下面这样的思维链模板。

作为一个为花店电商公司工作的 AI 助手,我的目标是帮助客户根据他们的喜好做出明智的决定。

我会按部就班的思考,先理解客户的需求,然后考虑各种鲜花的涵义,最后根据这个需求,给出我的推荐。

同时,我也会向客户解释我这样推荐的原因。

示例 1:

人类:我想找一种象征爱情的花。

AI:首先,我理解你正在寻找一种可以象征爱情的花。在许多文化中,红玫瑰被视为爱情的象征,这是因为它们的红色通常与热情和浓烈的感情联系在一起。因此,考虑到这一点,我会推荐红玫瑰。红玫瑰不仅能够象征爱情,同时也可以传达出强烈的感情,这是你在寻找的。

示例 2:

人类:我想要一些独特和奇特的花。

AI:从你的需求中,我理解你想要的是独一无二和引人注目的花朵。兰花是一种非常独特并且颜色鲜艳的花,它们在世界上的许多地方都被视为奢侈品和美的象征。因此,我建议你考虑兰花。选择兰花可以满足你对独特和奇特的要求,而且,兰花的美丽和它们所代表的力量和奢侈也可能会吸引你。

AI 的模板开始于对其角色的阐述,并给出了一些先前的对话示例(Few-Shot Learning)来帮助 AI 理解如何处理这种类型的请求。这些示例展示了 AI 如何根据思维链进行思考,给出深思熟虑之后的答案。

程序的完整框架

程序的完整代码如下:

# 设置环境变量和API密钥
import os
os.environ["OPENAI_API_KEY"] = '你的OpenAI API Key'# 创建聊天模型
from langchain.chat_models import ChatOpenAI
llm = ChatOpenAI(temperature=0)# 设定 AI 的角色和目标
role_template = "你是一个为花店电商公司工作的AI助手, 你的目标是帮助客户根据他们的喜好做出明智的决定"# CoT 的关键部分,AI 解释推理过程,并加入一些先前的对话示例(Few-Shot Learning)
cot_template = """
作为一个为花店电商公司工作的AI助手,我的目标是帮助客户根据他们的喜好做出明智的决定。 我会按部就班的思考,先理解客户的需求,然后考虑各种鲜花的涵义,最后根据这个需求,给出我的推荐。
同时,我也会向客户解释我这样推荐的原因。示例 1:人类:我想找一种象征爱情的花。AI:首先,我理解你正在寻找一种可以象征爱情的花。在许多文化中,红玫瑰被视为爱情的象征,这是因为它们的红色通常与热情和浓烈的感情联系在一起。因此,考虑到这一点,我会推荐红玫瑰。红玫瑰不仅能够象征爱情,同时也可以传达出强烈的感情,这是你在寻找的。示例 2:人类:我想要一些独特和奇特的花。AI:从你的需求中,我理解你想要的是独一无二和引人注目的花朵。兰花是一种非常独特并且颜色鲜艳的花,它们在世界上的许多地方都被视为奢侈品和美的象征。因此,我建议你考虑兰花。选择兰花可以满足你对独特和奇特的要求,而且,兰花的美丽和它们所代表的力量和奢侈也可能会吸引你。
"""
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate
system_prompt_role = SystemMessagePromptTemplate.from_template(role_template)
system_prompt_cot = SystemMessagePromptTemplate.from_template(cot_template)# 用户的询问
human_template = "{human_input}"
human_prompt = HumanMessagePromptTemplate.from_template(human_template)# 将以上所有信息结合为一个聊天提示
chat_prompt = ChatPromptTemplate.from_messages([system_prompt_role, system_prompt_cot, human_prompt])prompt = chat_prompt.format_prompt(human_input="我想为我的女朋友购买一些花。她喜欢粉色和紫色。你有什么建议吗?").to_messages()# 接收用户的询问,返回回答结果
response = llm(prompt)
print(response)

程序中,首先设置环境变量 OpenAI 的 API 密钥,以便能够使用 OpenAI 的 GPT-4 模型。然后创建聊天模型:通过调用 ChatOpenAI 类,创建了一个聊天模型。设置 temperature=0 可以让模型生成更确定性的回答,即输出更倾向于最可能的结果。

接着定义了 AI 的角色和目标,该 AI 为花店电商公司的助手,其目标是根据客户的喜好来提供购买建议。紧接着,定义 CoT 模板,其中包括了 AI 的角色和目标描述、思考链条以及遵循思考链条的一些示例,显示了 AI 如何理解问题,并给出建议。

之后,我使用了 PromptTemplate 的 from_template 方法,来生成相应的询问模板。其中包括用于指导模型的 SystemMessagePromptTemplate 和用于传递人类问题的 HumanMessagePromptTemplate。

然后,我使用了 ChatPromptTemplate.from_messages 方法,整合上述定义的角色,CoT 模板和用户询问,生成聊天提示。

最后,将生成的聊天提示输入模型中,获得模型的回答,并打印出来。

在 Few-Shot CoT 提示的指引之下,模型针对我们的问题,从问题中的具体需求出发,返回了不错的建议。

现在,根据你的需求:你正在寻找你的女朋友喜欢的粉色和紫色的花。

首先,我从理解你的需求出发,只会推荐粉色或紫色,或者两者的组合的花。这些可能包括粉色的玫瑰,紫色的兰花,或者是粉色和紫色的花的混合花束。玫瑰是象征爱情和亲情的经典符号,而兰花象征着美丽和力量。这两种花都蕴含很棒的内涵。当然了,无论你选择哪种花卉,重要的是表达出你对她的爱和关心。记得附上一张温馨的贺卡,写下你的真挚祝福。

Tree of Thought

CoT 这种思想,为大模型带来了更好的答案,然而,对于需要探索或预判战略的复杂任务来说,传统或简单的提示技巧是不够的。基于 CoT 的思想,Yao 和 Long 等人几乎在同一时间在论文《思维之树:使用大型语言模型进行深思熟虑的问题解决》和《大型语言模型指导的思维之树》中,进一步提出了思维树(Tree of Thoughts,ToT)框架,该框架基于思维链提示进行了总结,引导语言模型探索把思维作为中间步骤来解决通用问题。

ToT 是一种解决复杂问题的框架,它在需要多步骤推理的任务中,引导语言模型搜索一棵由连贯的语言序列(解决问题的中间步骤)组成的思维树,而不是简单地生成一个答案。ToT 框架的核心思想是:让模型生成和评估其思维的能力,并将其与搜索算法(如广度优先搜索和深度优先搜索)结合起来,进行系统性地探索和验证。

img

图片来源论文

ToT 框架为每个任务定义具体的思维步骤和每个步骤的候选项数量。例如,要解决一个数学推理任务,先把它分解为 3 个思维步骤,并为每个步骤提出多个方案,并保留最优的 5 个候选方案。然后在多条思维路径中搜寻最优的解决方案。

这种方法的优势在于,模型可以通过观察和评估其自身的思维过程,更好地解决问题,而不仅仅是基于输入生成输出。这对于需要深度推理的复杂任务非常有用。此外,通过引入强化学习、集束搜索等技术,可以进一步提高搜索策略的性能,并让模型在解决新问题或面临未知情况时有更好的表现。

下面我们应用 ToT 的思想,给出一个鲜花运营方面的示例。

假设一个顾客在鲜花网站上询问:“我想为我的妻子购买一束鲜花,但我不确定应该选择哪种鲜花。她喜欢淡雅的颜色和花香。”

AI(使用 ToT 框架):

思维步骤 1:理解顾客的需求。

顾客想为妻子购买鲜花。

顾客的妻子喜欢淡雅的颜色和花香。

思维步骤 2:考虑可能的鲜花选择。

候选 1:百合,因为它有淡雅的颜色和花香。

候选 2:玫瑰,选择淡粉色或白色,它们通常有花香。

候选 3:紫罗兰,它有淡雅的颜色和花香。

候选 4:桔梗,它的颜色淡雅但不一定有花香。

候选 5:康乃馨,选择淡色系列,它们有淡雅的花香。

思维步骤 3:根据顾客的需求筛选最佳选择。

百合和紫罗兰都符合顾客的需求,因为它们都有淡雅的颜色和花香。

淡粉色或白色的玫瑰也是一个不错的选择。

桔梗可能不是最佳选择,因为它可能没有花香。

康乃馨是一个可考虑的选择。

思维步骤 4:给出建议。

“考虑到您妻子喜欢淡雅的颜色和花香,我建议您可以选择百合或紫罗兰。淡粉色或白色的玫瑰也是一个很好的选择。希望这些建议能帮助您做出决策!”

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/577170.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用代码生成工具快速开发应用-结合后端Web API提供接口和前端页面快速生成,实现通用的业务编码规则管理

1、通用的业务编码规则的管理功能 在前面随笔我们介绍了一个通用的业务编码规则的管理功能,通过代码生成工具Database2Sharp一步步的生成相关的后端和Winform、WPF的界面,进行了整合,通过利用代码生成工具Database2sharp生成节省了常规功能的…

DreamTuner :通过单张图片实现主题驱动的图像生成

该项目由字节跳动开发,你只需要提供一张图片,DreamTuner就能帮你生成与这张图片在主题和风格上一致的新图像。比如你有一张可乐照片,它可以根据你的要求将可乐放在任何场景中或添加其他元素形成一张完美海报! 这个工具特别适用于需…

PyAV 使用浅谈

背景: PyAV是一个用于音频和视频处理的Python库,它提供了一个简单而强大的接口,用于解码、编码、处理和分析各种音频和视频格式。PyAV基于FFmpeg多媒体框架,它本质上是FFmpeg 的Python绑定,因此可以利用FFmpeg的功能来…

【MySQL】数据库之事务

目录 一、什么是事务 二、事务的ACID是什么? 三、有哪些典型的不一致性问题? 第一种:脏读 第二种:不可重复读 第三种:幻读 第四种:丢失更新 四、隔离级别有哪些? (1&#xf…

Docker介绍、常用命令与操作

Docker介绍、常用命令与操作 学习前言为什么要学习DockerDocker里的必要基础概念常用命令与操作1、基础操作a、查看docker相关信息b、启动或者关闭docker 2、容器操作a、启动一个镜像i、后台运行ii、前台运行 b、容器运行情况查看c、日志查看d、容器删除 3、镜像操作a、镜像拉取…

框架面试题

文章目录 1. spring中的bean是线程安全的吗2. 事务的实现--AOP3. 项目中用到的AOP4.spring中事务的失效场景5. Bean的生命周期6.spring中的循环引用问题7. springMVC的执行流程8. springboot自动装配原理9. 常见注解10 Mybatis11 Mybatis一二级缓存 1. spring中的bean是线程安全…

PoE交换机传输距离是多少?100米?250米?

你们好,我的网工朋友。 今天和你聊聊PoE交换机,之前有系统地给你讲解过一篇,可以先回顾一下哈:《啥样的交换机才叫高级交换机?这张图告诉你》 为什么都说PoE交换机好?它最显著的特点就是: 可…

SQL手工注入漏洞测试(MySQL数据库)

一、实验平台 https://www.mozhe.cn/bug/detail/elRHc1BCd2VIckQxbjduMG9BVCtkZz09bW96aGUmozhe 二、实验目标 获取到网站的KEY,并提交完成靶场。 三、实验步骤 ①、启动靶机,进行访问查找可能存在注入的页面 ②、通过测试判断注入点的位置(id) (1)…

PyTorch官网demo解读——第一个神经网络(3)

上一篇:PyTorch官网demo解读——第一个神经网络(2)-CSDN博客 上一篇文章我们讲解了第一个神经网络的模型,这一篇我们来聊聊梯度下降。 大佬说梯度下降是深度学习的灵魂;梯度是损失函数(代价函数&#xff…

云渲染UE4像素流送搭建(winows、ubuntu)

windows/ubuntu20.4下UE4.27.2像素流送 像素流送技术可以将服务器端打包的虚幻引擎应用程序在客户端的浏览器上运行,用户可以通过浏览器操作虚幻引擎应用程序,客户端无需下载虚幻引擎,本文实现两台机器通过物理介质网线实现虚幻引擎应用程序…

智能优化算法应用:基于广义正态分布算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于广义正态分布算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于广义正态分布算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.广义正态分布算法4.实验参数设定…

【序列化和反序列化】

🍁什么是序列化和反序列化? 🍁典型解析🍁拓展知识仓🍁如何进行序列化和反序列化🍁未实现Serializable,可以序列化吗? 🍁典型解析 在Java中,我们可以通过多种方式来创建对…

我的NPI项目之Android电源系列(四) -- 关于剩余充满时间的问题的代码跟踪-max1720x_battery.c qpnp-smb2.c

从我的NPI项目之Android电源系列(三), 能够看出,healthd是通过读取/sys/class/power_supply/battery/time_to_full_now而进行充满剩余时间的。 在/sys/class/power_supply/battery/...目录下有很多文件,具体内容如下: /sys/class…

详谈 springboot整合shiro

背景: 本章将进一步的落地实践学习,在springboot中如何去整合shrio,整个过程步骤有个清晰的了解。 利用Shiro进行登录认证主要步骤: 1. 添加依赖:首先,在pom.xml文件中添加Spring Boot和Shiro的相关依赖…

java接口限流详解

目录 1.简介1.1.为什么需要限流?1.2.限流和熔断有什么区别?1.3.限流和削峰有什么区别?1.4 缓存,降级,限流简介 2.应用级限流2.1 控制并发数量2.2 控制访问速率2.2.1 令牌桶算法2.2.2 漏桶算法 3.分布式限流4.交流群 1.简介 接口…

漏洞复现-红帆OA iorepsavexml.aspx文件上传漏洞(附漏洞检测脚本)

免责声明 文章中涉及的漏洞均已修复,敏感信息均已做打码处理,文章仅做经验分享用途,切勿当真,未授权的攻击属于非法行为!文章中敏感信息均已做多层打马处理。传播、利用本文章所提供的信息而造成的任何直接或者间接的…

浅谈师范双非普本工科专业的秋招历程

本人普通师范院校通信工程专业,于秋招历程之中四处碰壁,迫于家庭等各种因素考虑,最终选择移动的偏远县城岗位的OFFER!本人秋招历程之中,屡屡碰壁,也算得上“收获满满”!我简单给各位浅谈一下我的…

气动冷凝水回收泵机械浮球泵的特点工作原理介绍 不需要电源

​ 1:气动凝水回收泵机械式介绍 气动冷凝水回收泵是一种设计用于不使用电力来泵送冷凝液、油和其他高温液体等的设备。它无需维护,能将大量凝结水和其它液体从低位、低压或真空场所泵送到高处及高压区域。与传统电泵相比,气动冷凝水回收泵可…

放大电路的静态分析和动态分析例题

(一) (二) (三) (四) (五)

Spring Boot学习随笔- 第一个Thymeleaf应用(基础语法th:,request、session作用域取值)

学习视频:【编程不良人】2021年SpringBoot最新最全教程 第十五章、Thymeleaf Thymeleaf是一种现代化的服务器端Java模板引擎,专门用于Web和独立环境。Thymeleaf在有网络和无网络的环境下皆可运行,即可以让美工在浏览器查看页面的静态效果&am…