畅通您的iOS开发之路

随着大家对苹果产品的趋之若鹜,iphone与ipad软件开发的前景也相当广阔。然而,目前精通iOS开发的专业人才却是凤毛麟角。因此,安博中 程在2012年推出重磅课程——“iPhone与iPad开发实战之路——精通iOS开发”高级培训班,为想从事iPhone、iPod 和iPad开发的程序员、系统设计人员以及想从事Mac OS X下应用开发的程序员和相关人员提供了一个高效快速的学习平台。

  2012年3月9日至12日,为期4天的“iPhone与iPad开发实战之路——精通iOS开发”高级培训-北京班在安博中程北京总部成功举办。来自全国各地的近50位学员齐聚一堂,共同学习iOS开发实战知识。

“iPhone与iPad开发实战之路——精通iOS开发”课堂剪影
“iPhone与iPad开发实战之路——精通iOS开发”课堂剪影

关老师授课
关老师授课

  本次课程的授课老师是安博中程金牌讲师关东升老 师。关老师拥有16年软件开发经验、8年培训行业经验。精通JAVA、JAVAEE、Spring和AJAX,微软.NET体系结构、移动开发、设计模式 与软件架构,iOS、Android和Windows Phone 7开发等技术。曾先后参与开发北京公交一卡通系统、日本NEC委托开发系统、中国移动广东分公司业务报表系统;大型网络游戏神农诀Android和iOS 客户端、国家农产品追溯系统iPad客户端、大型团购网站移动端开发、在App Store发布多款游戏和应用软件、发布多款Android应用,擅长移动平台的应用和游戏类项目开发。著有《Android项目驱动式案例教程》、 《JSP网络程序设计》等书籍。即将出版的书籍有《iPhone与iPad开发实战——iOS 经典应用剖析》 、《基于Android 4的英雄诀网络游戏项目开发实战》。近期为中国移动、大唐电信、中石油等企事业单位授课。

  关老师介绍说,本次课程既是iPhone与iPad开发实战之路系列课程的入门课程,又是知识体系覆盖全面、软件版本和工具最新的课程,而且采用案例驱动模式进行授课,并在iPad或iPhone上测试和运行,使学员学习效果事半功倍。

  据安博中程企业培训负责人透露,未来安博中程会陆续推出“iPhone与iPad开发实战之路”的其他课程,适合不同基础的技术人员,真正达到分门列类、因材施教的效果。

转载于:https://www.cnblogs.com/jjklmm/archive/2012/03/21/2409316.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/576543.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入理解java虚拟机 (二) 第二版

如何阅读本书 本书-共分为五个部分:走近Java、自动内存管理机制、虛拟机执行子系统、程序编译与代码优化、高效并发。各部分基本上是互相独立的,没有必然的前后依赖关系,读者可以从任何- -个感兴趣的专题开始阅读,但是每个部分中的各个章节间…

最优化学习笔记(十六)——拟牛顿法(2)

Hessian矩阵逆矩阵的近似 一、拟牛顿法的基本思路 令H0,H1,H2,…表示Hessian矩阵逆矩阵F(x(k))−1的一系列近似矩阵。我们要讨论的是这些近似矩阵应该满足的条件,这是拟牛顿法的基础。首先,假定目标函数f的Hessian矩阵F(x)是常数矩阵,与x无关…

tool vmmap 配置符号文件 symbolic file

转载于:https://www.cnblogs.com/titer1/archive/2012/03/21/2410316.html

最优化学习笔记(十七)——拟牛顿法(3)

秩1修正公式 在秩1修正公式中,修正项为αkz(k)z(k)T,αk∈R,z(k)∈Rn,是一个对称矩阵,近似矩阵的更新方程为: Hk1Hkαkz(k)z(k)T\boldsymbol{H}_{k+1} = \boldsymbol{H}_{k} + \alpha_k\boldsymbol{z}^{(k)}\boldsymbol{z}^{(k)T}注意&#…

深入理解java虚拟机 (三) 第二版

参考资料 本书名为“深人理解Java虚拟机”,但要想深人理解虚拟机,仅凭- -本书肯定是远远不够的,读者可以通过以下信息找到更多关于Java虚拟机方面的资料。我在写作此书的时候,也从下面这些参考资料中获得了很大的帮助。. (1)书籍…

memcached 如果进程占用cpu很高

memcached 如果进程占用cpu很高一客户占用到了 25% 把mencache内存大小从32m 改成256m 后 memcached 基本占用cpu 是0可能分配的内存不够用了 大量的新缓存需要进入 同时大量的旧缓存又需要被淘汰出来 导致 一进一出非常频繁 从而导致服务性能下降加大内存吧操作如下&#xff…

最优化学习笔记(十八)——拟牛顿法(4)DFP算法

秩2算法可以保证在任意第k步迭代下, 只要一维搜索是精确的,近似矩阵Hk就是正定的。 DFP算法 令k0,选择初始点x(0),任意选择一个堆成正定实矩阵H0。如果g(k)0, 停止迭代; 否则,令d(k)−Hkg(k)计算 αkargminα≥0f(x(k)αd(k)…

《深入理解java虚拟机》第1章 走近Java

1.4 Java虚拟机发展史 上一节我们从整个Java技术的角度观察了Java 技术的发展,许多Java程序员都会潜意识地把它与Sun公司的HotSpot虚拟机等同看待,也许还有一些程序员会注意到BEA.JRockit和IBM J9,但对JVM的认识不仅仅只有这些。从1996年初S…

Asp.net报表制作 OpenFlashChart免费图表组件

Asp.net报表制作 OpenFlashChart免费图表组件 OpenFlashChart是一款开源的以Flash和Javascript为技术基础的免费图表组件,用它能创建一些很有效果的报表分析图表。  最重要的是它是开源和免费的,该组件使用flash展示报表能够很好的做到与浏览器进行集成…

使用简单的5个步骤设置 Web服务器集群

通过在多个处理器之间分担工作负载并采用多种软件恢复技术,能够提供高度可用的环境并提高环境的总体 RAS(可靠性、可用性和可服务性)。可以得到的好处包括:更快地从意外中断中恢复运行,以及将意外中断对终端用户的影响…

最优化学习笔记(十九)——拟牛顿法(5)BFGS算法

一、BFGS算法的更新公式 为了推导BFGS算法,需要用到对偶或者互补的概念,前边已经讨论过hessian矩阵逆矩阵的近似矩阵需要满足以下条件: Hk1Δg(i)Δx(i)0≤i≤k\boldsymbol{H}_{k+1} \Delta\boldsymbol{g}^{(i)} = \Delta\boldsymbol{x}^{(i…

浅谈HotSpot逃逸分析

JIT 即时编译(Just-in-time Compilation,JIT)是一种通过在运行时将字节码翻译为机器码,从而改善字节码编译语言性能的技术。在HotSpot实现中有多种选择:C1、C2和C1C2,分别对应client、server和分层编译。 …

pku 1611 The Suspects 并查集的应用

http://poj.org/problem?id1611 思路&#xff1a;统计出和0能够联系在一起的点&#xff0c;然后输出其个数 View Code #include <cstdio>#include <iostream>#define maxn 30004using namespace std;int f[maxn],num[maxn];//num记录与0有联系的个数int n,m;int …

Java陷阱(一)——ArrayList.asList

一、问题代码 话不多说&#xff0c;直接上问题代码&#xff1a; package com.pajk.recsys.dk.test;import java.util.ArrayList; import java.util.Arrays; import java.util.List;import com.pajk.recsys.utils.CommonUtils;public class CommonTest {public static List<…

ElasticSearch bool过滤查询

bool过滤查询 可以实现组合过滤查询 格式: { "bool": { "must: 0, "should: O, "must not":0}} must:必须满足的条件---and should:可以满足也可以不满足的条件--or must_ not:不需要满足的条件--not GET /lib5/items/_search { "post_fi…

Word2Vec训练同义词模型

一、需求描述 业务需求的目标是识别出目标词汇的同义词和相关词汇&#xff0c;如下为部分目标词汇(主要用于医疗问诊)&#xff1a; 尿 痘痘 发冷 呼吸困难 恶心 数据源是若干im数据&#xff0c;那么这里我们选择google 的word2vec模型来训练同义词和相关词。 二、数据处理…

ElasticSearch 聚合查询

价格总和&#xff1a; 1,使用aggs 2,自己起个名字price_of_sum 3,求和sum 4&#xff0c;filed要求和的字段 GET /lib5/items/_search {"aggs": {"price_of_sum": {"sum": {"field": "price"}}} }聚合查询结果&#x…

hdu Candy Sharing Game

http://acm.hdu.edu.cn/showproblem.php?pid1034 模拟题 View Code 1 #include<iostream> 2 using namespace std; 3 int a[100000]; 4 int b[100000];//a的一半 5 int n; 6 int main() 7 { 8 while(cin>>n && n) 9 {10 int i;11 …

Spark下的word2vec模型训练

一、引言 前边一节介绍了Word2Vec模型训练同义词&#xff0c;那么在大数据量的情况下&#xff0c;我们自然想到了用spark来进行训练。下面就介绍我们是如何实现spark上的模型训练。 二、分词 模型训练的输入是分好词的语料&#xff0c;那么就得实现spark上的分词。 def split…

ElasticSearch 复合查询

使用bool查询 接收以下参数: must:文档必须匹配这些条件才能被包含进来。 must _not:文档必须不匹配这些条件才能被包含进来。 should:如果满足这些语句中的任意语句&#xff0c;将增加。score, 否则&#xff0c;无任何影响。它们主要用于修正每个文档的相关性得分。 filter:必…