理解:给定两个点,画出两个点的连线经过的栅格。
求解思路:
1.
bresenham贝汉明算法_Bimme军的博客-CSDN博客
2.
若干计算机图形学算法实现_JulyThirteenth的博客-CSDN博客
// grid traversal
void gridTraversal(const dPoint &start, const dPoint &goal, const double resolution, std::vector<iPoint> &visited_grid)
`{``iPoint s_grid = {static_cast<int>(std::floor(start.x / resolution)), static_cast<int>(std::floor(start.y / resolution))};``iPoint g_grid = {static_cast<int>(std::floor(goal.x / resolution)), static_cast<int>(std::floor(goal.y / resolution))};``dPoint vector = {goal.x - start.x, goal.y - start.y};``double stepX = (vector.x > 0) ? 1 : -1;``double stepY = (vector.y > 0) ? 1 : -1;``double next_grid_boundary_x = (s_grid.x + stepX) * resolution;``double next_grid_boundary_y = (s_grid.y + stepY) * resolution;``double tMaxX = (vector.x != 0) ? (next_grid_boundary_x - start.x) / vector.x : DBL_MAX;``double tMaxY = (vector.y != 0) ? (next_grid_boundary_y - start.y) / vector.y : DBL_MAX;``double tDeltaX = (vector.x != 0) ? resolution / vector.x * stepX : DBL_MAX;``double tDeltaY = (vector.y != 0) ? resolution / vector.y * stepY : DBL_MAX;``iPoint diff = {0, 0};``iPoint c_grid = {s_grid.x, s_grid.y};``visited_grid.push_back(c_grid);``bool negative = false;``if (s_grid.x != g_grid.x && vector.x < 0)``{``diff.x--, negative = true;``}``if (s_grid.y != g_grid.y && vector.y < 0)``{``diff.y--, negative = true;``}``if (negative)``{``c_grid.x += diff.x;``c_grid.y += diff.y;``visited_grid.push_back(c_grid);``}``double tx = tMaxX;``double ty = tMaxY;``while (!(c_grid == g_grid))``{``if (tx < ty)``{``c_grid.x += stepX;``tx += tDeltaX;``}``else``{``c_grid.y += stepY;``ty += tDeltaY;``}``visited_grid.push_back(c_grid);``}`
`}`
算法理解
我们首先找到当前栅格的下一个 x 和 y 方向的栅格 1 和 2 ;
计算下 1 和 2 距离开始节点的 x 向 和 y 向的距离 xd 和 yd 占起止点之间在 x y 向的距离的百分比 x% y%;
假如 x% < y% 那么下一个栅格就是 当前节点的 x 加 1 或者 -1 ;
注意更新 x% , 也就是 x% 变为了 新的当前节点到开始节点 x 向的距离占起止节点之间 x 向的距离的百分比了。
TARE 里面有类似的实现代码