机器学习基础15-模型保存

结果部署是机器学习项目中的最后一步,也是最重要的步骤之一。选
定算法之后,对算法训练生成模型,并部署到生产环境上,以便利用机器学习解决实际问题。模型生成之后,也需要定期对模型进行更新,使模型处于最新、最有效的状态,通常建议
3~6个月更新一次模型。

持久化加载模型

找到一个能够生成高准确度模型的算法不是机器学习最后的步骤,在实际的项目中,需要将生成的模型序列化,并将其发布到生产环境。当有新数据出现时,需要反序列化已保存的模型,然后用其预测新的数据。接下来将介绍在Python中如何序列化和反序列化scikit-learn的模型。

本章内容将包括以下几个方面:

  • 模型序列化和重用的重要性。
  • 如何通过pickle来序列化和反序列化机器学习的模型。
  • 如何通过joblib来序列化和反序列化机器学习的模型。

通过pickle序列化和反序列化机器学习的模型

pickle是标准的Python序列化的方法,可以通过它来序列化机器学习算法生成的模型,并将其保存到文件中。当需要对新数据进行预测时,将保存在文件中的模型反序列化,并用其来预测新数据的结果。

下面给出一个根据 Pima Indians数据集训练逻辑回归算法生成的一个模型,并将其序列化到文件,然后反序列化这个模型的例子。在机器学习项目中,当模型训练需要花费大量的时间时,模型序列化是尤为重要的。

代码如下:

import pickleimport pandas as pdfrom sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split#数据预处理
path = 'D:\down\\archive\\diabetes.csv'
data = pd.read_csv(path)#打印标签名称
print(data.columns[0:8])#将数据转成数组
array = data.values
#分割数据,去掉最后一个标签
X = array[:, 0:8]Y = array[:, 8]test_size = 0.33
seed = 4X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size, random_state=seed)model = LogisticRegression()model.fit(X_train, Y_train)#保存模型
filename = 'finalized_model.sav'with open(filename, 'wb') as f:pickle.dump(model, f)#加载模型
with open(filename, 'rb') as f:#模型反序列化loaded_model = pickle.load(f)result = loaded_model.score(X_test, Y_test)print("算法评估结果:%.3f%%" % (result * 100.0))

运行结果:

算法评估结果:80.709%

同时也会生成模型文件

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/57585.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ssm+vue线上体验馆管理系统源码和论文

ssmvue线上体验馆管理系统源码和论文085 开发工具:idea 数据库mysql5.7 数据库链接工具:navcat,小海豚等 技术:ssm 摘 要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储&#xff0…

python web GUI框架-NiceGUI 教程(一)

python web GUI框架-NiceGUI 教程(一) streamlit可以在一些简单的场景下仍然推荐使用,但是streamlit实在不灵活,受限于它的核心机制,NiceGUI是一个灵活的web框架,可以做web网站也可以打包成独立的exe。 基…

hdfs操作

hadoop fs [generic options] [-appendToFile … ] [-cat [-ignoreCrc] …] [-checksum …] [-chgrp [-R] GROUP PATH…] [-chmod [-R] <MODE[,MODE]… | OCTALMODE> PATH…] [-chown [-R] [OWNER][:[GROUP]] PATH…] [-copyFromLocal [-f] [-p] [-l] [-d] … ] [-copyTo…

电子价签如何让电信门店数字化事半功倍?

数字化转型&#xff0c;高效的工具首先跟上。早在2020年&#xff0c;深圳电信就与云里物里开展商业合作&#xff0c;在深圳所有电信营业厅安装云里物里的ESL电子标签&#xff0c;以替代传统纸质标签的显示。经过几年的效果认证&#xff0c;云里物里的数字化智显设备得到了深圳电…

Web3.0时代什么时候到来,Web3.0有什么机会?

&#x1f3c6;作者简介&#xff0c;黑夜开发者&#xff0c;CSDN领军人物&#xff0c;全栈领域优质创作者✌&#xff0c;CSDN博客专家&#xff0c;阿里云社区专家博主&#xff0c;2023年6月CSDN上海赛道top4。 &#x1f3c6;数年电商行业从业经验&#xff0c;历任核心研发工程师…

什么是亚马逊类目核心关键词?

亚马逊类目核心关键词是指在亚马逊平台上&#xff0c;与特定产品类别相关且具有较高搜索量和竞争度的关键词。这些关键词在产品标题、描述、属性和搜索关键字等位置使用&#xff0c;有助于提高产品的曝光度和搜索排名&#xff0c;并吸引潜在买家的注意。选择适当的核心关键词可…

Flink Kubernates Native - 入门

创建 namespace [rootCentOSA flink-1.17.1]# kubectl create ns flink-native [rootCentOSA flink-1.17.1]# kubectl config set-context --current --namespaceflink-native命令空间添加资源限制 [rootCentOSA flink-1.17.1]# vim namespace-ResourceQuota.yamlapiVersion:…

IDEA的maven想显示层级关系,而非平级

新版和旧版的IDEA的位置不一样&#xff0c;2023.2.1的版本在右上角的“” 这个位置 如图所示&#xff1a; 然后点击按模块分组&#xff1a;

在项目中快速搭建机器学习的流程

在软件开发领域&#xff0c;机器学习框架发挥着关键作用&#xff0c;为开发人员提供强大的人工智能工具、库和算法&#xff0c;以有效地利用机器学习的潜力。从本质上讲&#xff0c;机器学习使计算机能够从数据中学习并做出预测或决策&#xff0c;而无需明确编程。 机器学习框…

腾讯云服务器配置CPU内存怎么选?带宽多大合适?

腾讯云服务器配置如何选择&#xff1f;CPU内存、带宽和系统盘怎么选择合适&#xff1f;个人用户可以选择轻量应用服务器&#xff0c;企业用户可以选择云服务器CVM&#xff0c;2核2G3M带宽轻量服务器95元一年、2核4G5M服务器168元一年&#xff0c;企业用户可以选择标准型S5云服务…

Java 大厂面试 —— 常见集合篇 List HashMap 红黑树

23Java面试专题 八股文面试全套真题&#xff08;含大厂高频面试真题&#xff09;多线程_软工菜鸡的博客-CSDN博客 常见集合篇-01-集合面试题-课程介绍 02-算法复杂度分析 2 List相关面试题 2.1 数组 2.1.1 数组概述 数组&#xff08;Array&#xff09;是一种用连续的内存空…

Visual Studio中Linux开发头文件intellisense问题的解决办法

文章目录 前言个人环境 SSH到WSL复制文件后记 前言 最近在用我心爱的Visual Studio配合WSL2做一些Linux开发&#xff0c;但是有一个问题&#xff0c;就是当我#include <sys/socket.h>&#xff0c;会提示找不到文件 我尝试了各种姿势&#xff0c;包括修改CMakeSettings.…

与面试官互动:建立积极的技术讨论氛围

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

在 AWS 中导入 qcow2 镜像

文章目录 在 AWS 中导入 qcow2 镜像使用的格式和问题步骤概述前提条件转换镜像格式并上传至 S3创建角色并配置策略策略文件内容创建container.json配置文件导入镜像创建 AMI 并启动实例参考:在 AWS 中导入 qcow2 镜像 当我们在多云环境中部署应用时,有时候可能需要把基于 qem…

C语言学习笔记(完整版)

文章目录 算法算法的基本概念算法的特征算法的优劣 描述算法三种基本结构流程图N-S流程图伪代码 常量和变量了解数据类型常量整形常量实型常量字符型常量转义字符符号常量 变量整形变量实型变量字符型变量 表达式与运算符赋值运算符和赋值表达式变量赋初值强制类型转换 算术运算…

Stack Overflow开发者调查发布:AI将如何协助DevOps

Stack Overflow 发布了开创性的2023年度开发人员调查报告 [1]。报告对 90,000 多名开发人员进行了调查&#xff0c;全面展示了当前软件开发人员的体验。接下来&#xff0c;本文将重点介绍几项重要发现&#xff0c;即重要编程语言和工具偏好、人工智能在开发工作流程中的应用以及…

Spring Boot(Vue3+ElementPlus+Axios+MyBatisPlus+Spring Boot 前后端分离)【六】

&#x1f600;前言 本篇博文是关于Spring Boot(Vue3ElementPlusAxiosMyBatisPlusSpring Boot 前后端分离)【六】&#xff0c;希望你能够喜欢 &#x1f3e0;个人主页&#xff1a;晨犀主页 &#x1f9d1;个人简介&#xff1a;大家好&#xff0c;我是晨犀&#xff0c;希望我的文章…

git 查看/配置 local/global 用户名称和用户邮箱

1、--local: 本地设置&#xff08;仅对当前仓库有效&#xff09; git config --local user.name “你的名称” git config --local user.email “你的邮箱” 2、--global 全局设置&#xff08;对当前用户的所有仓库有效&#xff09; git config --global user.name “你的名称…

【Bash】常用命令总结

文章目录 1. 文件查询1.1 查看文件夹内&#xff08;包含子文件夹&#xff09;文件数量1.2 查看文件夹大小 任务简介&#xff1a; 对bash常用命令进行总结。 任务说明&#xff1a; 对平时工作中使用bash的相关命令做一个记录和说明&#xff0c;方便以后查阅。 1. 文件查询 1.…

无人机甚高频无线电中继通讯U-ATC118

简介 甚高频无线电中继通讯系统使用经过适航认证的机载电台连接数字网络传输模块&#xff0c;通过网络远程控制无缝实现无人机操作员与塔台直接语音通话。无人机操作员可以从地面控制站远程操作机载电台进行频率切换、静噪开关、PTT按钮&#xff0c;电台虚拟面板与真实面板布局…