OpenCV简介

OpenCV简介

OpenCV(开源计算机视觉库:http://opencv.org)是一个开源库,包含数百种计算机视觉算法。OpenCV 具有模块化结构,主要包括下列模块:

  • 核心功能(core) - 定义基本数据结构的紧凑模块,包括密集多维数组 Mat 和所有其他模块使用的基本函数。
  • 图像处理( imgproc) - 图像处理模块,包括线性和非线性图像过滤、几何图像变换(调整大小、仿射和透视变形、基于通用表的重新映射)、颜色空间转换、直方图等。
  • 视频分析( video ) - 视频分析模块,包括运动估计、背景扣除和对象跟踪算法。
  • 相机校准和 3D 重建( calib3d ) -基本多视图几何算法、单立体相机校准、物体姿态估计、立体对应算法和 3D 重建元素。
  • 2D 特征框架( features2d ) -显着特征检测器、描述符和描述符匹配器。
  • 对象检测( objdetect ) -检测预定义类的对象和实例(例如,面部、眼睛、杯子、人、汽车等)。
  • 高级 GUI ( highgui ) - 一个易于使用的界面,具有简单的UI 功能。
  • 视频 I/O ( videoio ) - 一个易于使用的视频捕获和视频编解码器接口。
  • …一些其他帮助模块,例如 FLANN 和 Google 测试包装器、Python 绑定等。

当前的 OpenCV 实现是完全可重新输入的。也就是说,不同类实例的相同函数或相同方法可以从不同线程调用。此外,相同的 Mat 可以在不同的线程中使用,因为引用计数操作使用特定于体系结构的原子指令

API概念

命名空间

opencv 的所有类和函数都存放在 cv 命名空间中。因此,要引用 opencv 的代码,需要增加作用域运算符 cv::,在项目开发中,建议不用使用 using namespace cv 定义作用域范围,可能会引起某些的冲突。jpg是一个有损压缩算法,在平时使用时尽量避免使用。

自动内存管理

OpenCV的内存管理机制类似 Shared_ptr, Mat 对象只有当引用计数为 0,其内存空间才会真正得销毁,当一个 Mat 实例被拷贝时,内存并不会真正的发生复制行为,而是将改对象的引用计数增加 1, 可以使用 cv::Mat::clone 进行实际 “全复制”。

// create a big 8Mb matrix
Mat A(1000, 1000, CV_64F);
// create another header for the same matrix;
// this is an instant operation, regardless of the matrix size.
Mat B = A;
// create another header for the 3-rd row of A; no data is copied either
Mat C = B.row(3);
// now create a separate copy of the matrix
Mat D = B.clone();
// copy the 5-th row of B to C, that is, copy the 5-th row of A
// to the 3-rd row of A.
B.row(5).copyTo(C);
// now let A and D share the data; after that the modified version
// of A is still referenced by B and C.
A = D;
// now make B an empty matrix (which references no memory buffers),
// but the modified version of A will still be referenced by C,
// despite that C is just a single row of the original A
B.release();
// finally, make a full copy of C. As a result, the big modified
// matrix will be deallocated, since it is not referenced by anyone
C = C.clone();

对于用户自定义的数据类型,opencv 提供了 cv:Ptr 进行管理,其机制和刚刚的描述一致。

# 普通指针定义
T* ptr = new T(....);# opencv 提供的管理方式
cv::Ptr prt(new T(...));
cv::Ptr ptr = cv::makePtr<T>(...);

Ptr封装了一个 T 实例的指针和该指针引用计数器,更多的细节在 cv::Ptr 。

对输出数据自动分配内存

opencv可以为输出数据类型自动 分配 和 重分配 内存,其 size 和 type 取决于输入数据的 size 和 type。同时,可为输出数据指定额外的参数。

#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
using namespace cv;
int main(int, char**)
{VideoCapture cap(0);if(!cap.isOpened()) return -1;Mat frame, edges;namedWindow("edges", WINDOW_AUTOSIZE);for(;;){cap >> frame;cvtColor(frame, edges, COLOR_BGR2GRAY);GaussianBlur(edges, edges, Size(7,7), 1.5, 1.5);Canny(edges, edges, 0, 30, 3);imshow("edges", edges);if(waitKey(30) >= 0) break;}return 0;
}

上面的代码通过输出重定向符 >> 自动为 frame 实例分配内存,因为视频的视频的帧分辨率和位深已通过 video capturing module处理并获知。 edges 的内存被函数 cvtColor 函数自动分配,它和输入具有相同的 size 和 bit-depth。通道数经过 cv::COLOR_BGR2GRAY处理并设为1(彩色图变为灰度图)。frame 和 edges 在第一次执行时分配内存并具有相同的帧分辨率,当分辨率改变时,frame 和 edges 的内存会被自动的重新分配。

该技术的关键组件是 cv::Mat::create 方法。如果数组已经具有指定的大小和类型,则该方法不执行任何操作。否则,它释放先前分配的数据(如果有)(这部分涉及递减引用计数器并将其与零进行比较,释放掉无用的内存),然后分配所需大小的新缓冲区。

某些例如的函数需要注意,例如 cv::mixChannels, cv::RNG::fill等,他们不能分配输出数据,我们不得不手动执行。

饱和度算法

这一节主要想介绍OpenCV的存储方式,以及可能产生的错误。因为opencv对像素的存储是以紧凑的、每通道 8 位或 16 位的形式进行编码,值的范围非常有限,对图像的某些处理(如色彩空间转换、亮度/对比度调整、锐化、复杂插值(双三次、Lanczos))很可能产生超出可用范围的值,这样就会产生图像伪影。为了解决这个问题,需要使用饱和度算法。例如,存储变量或计算结果(r)到一个8位图像时,使用下列公式,找到在0-255范围内最接近的值:
f ( x , y ) = m i n ( m a x ( r o u n d ( r ) , 0 ) , 255 ) f(x,y) = min(max(round(r), 0), 255) f(x,y)=min(max(round(r),0),255)
这个函数在opencv的库中已经做了实现:

I.at<uchar>(y,x)=saturate_cast<uchar>(r);

其中,cv::uchar 代表8位无符号整形
在这里插入图片描述
右图出现了视觉伪影

OpenCV的模板使用受限

模板如果广泛使用会增加编译时间和代码大小,单独使用模板也很难将接口和实现分开。对于opencv视觉库来说,如果使用模板可能某个算法会跨越上千行代码。OpenCV实现了基于多态性和模板上的运行时调度,以简化和其他语言的绑定开发。OpenCV在运行时调度太慢的地方(像素访问运算符),在某些不使用模板不能实现(cv:Ptr<>)、或不易于实现的地方(cv::saturate_cast<>)引入了模板类、方法、和函数。

opencv可以操作的数据类型有限。也就是说,数组元素应该具有以下类型之一:

  • 8 位无符号整数 (uchar)
  • 8 位有符号整数 (schar)
  • 16 位无符号整数 (ushort)
  • 16 位有符号整数(短)
  • 32 位有符号整数 (int)
  • 32位浮点数(float)
  • 64 位浮点数(双精度)
  • 由多个元素组成的元组,其中所有元素都具有相同的类型(上述类型之一)。其元素为此类元组的数组称为多通道数组,与元素为标量值的单通道数组相反。最大可能的通道数由CV_CN_MAX常量定义,当前设置为 512。

可以使用以下选项指定多通道(n 通道)类型:

  • CV_8UC1 … CV_64FC4常量(通道数1-4)
  • CV_8UC(n) … CV_64FC(n) or CV_MAKETYPE(CV_8U, n) … CV_MAKETYPE(CV_64F, n) 通道数大于4或未知时的语法

Note:
CV_32FC1 == CV_32F, CV_32FC2 == CV_32FC(2) == CV_MAKETYPE(CV_32F, 2), 和CV_MAKETYPE(depth, n) == ((depth&7) + ((n-1)<<3). 这意味着常量类型由深度(取最低 3 位)和通道数减 1(取接下来的log2(CV_CN_MAX)位)构成。

# 3x3的浮点数单通道矩阵
Mat mat(3,3,CV_32F)# 10x1的浮点数双通道矩阵
Mat cmatx(10,1,CV_64FC2)# 3通道图像
Mat img(Size(1920, 1080), CV_8UC3)#单通道图像,和img的大小、通道数据类型相同
Mat grayscale(img.size(), CV_MAKETYPE(img.depth(), 1));

输入输出数组

在某些情况下,使用std::vector<>(例如,对于点集)或cv::Matx<>(对于 3x3 单应性矩阵等)更方便。为了避免 API 中出现许多重复,引入了特殊的“代理”类。基本“代理”类是cv::InputArray。它用于在函数输入上传递只读数组。派生自InputArray类cv::OutputArray用于指定函数的输出数组。通常,您不应该关心那些中间类型(并且您不应该显式声明这些类型的变量),它都会自动工作。您可以假设您始终可以使用cv::Mat、std::vector<>、cv::Matx<>或来代替 InputArray cv::Vec<>/ OutputArray cv::Scalar。当函数具有可选的输入或输出数组,而您没有或不需要时,请传递cv::noArray()。

InputArray可以接受以下类型的输入数据:

  1. cv::Mat:用于表示图像或矩阵数据。
  2. std::vector:用于表示标准C++ STL容器的数据,如std::vectorcv::Point,std::vectorcv::Vec3f等。
  3. 数组:可以接受指向数据的指针和数据的大小。
  4. cv::InputArrayOfArrays:用于表示多个InputArray的数组,用于处理多通道数据或多个数据块。
  5. cv::cuda::GpuMat:用于表示GPU上的图像或矩阵数据(仅适用于使用OpenCV的CUDA模块)。
void processImage(cv::InputArray input) {cv::Mat image = input.getMat(); // 获取输入图像的Mat对象// 进行图像处理操作
}

在调用processImage函数时,可以传递图像、矩阵或其他支持的数据类型作为参数,OpenCV会自动处理它们,并将其转换为相应的cv::Mat对象,方便你进行图像处理操作。使用InputArray可以使函数接受更加灵活的输入数据类型,增加代码的可重用性和可扩展性。

错误处理

OpenCV 使用异常来表示严重错误。当输入数据具有正确的格式并且属于指定的值范围,但由于某种原因算法无法成功(例如优化算法没有收敛)时,它返回一个特殊的错误代码(通常只是一个布尔变量)。OpenCV 使用异常来表示严重错误。当输入数据具有正确的格式并且属于指定的值范围,但由于某种原因算法无法成功(例如优化算法没有收敛)时,它返回一个特殊的错误代码(通常只是一个布尔变量)。

通常使用CV_Error(errcode, description)宏或其类似 printf 的CV_Error_(errcode, (printf-spec, printf-args))变体或使用CV_Assert(condition)宏来抛出异常,该宏检查条件并在不满足时抛出异常。对于性能关键型代码,CV_DbgAssert(condition)仅保留在调试配置中。由于自动内存管理,如果突然发生错误,所有中间缓冲区都会自动释放。如果需要,您只需要添加一条 try 语句来捕获异常:

try
{... // call OpenCV
}
catch (const cv::Exception& e)
{const char* err_msg = e.what();std::cout << "exception caught: " << err_msg << std::endl;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/57340.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

iOS砸壳系列之三:Frida介绍和使用

当涉及从App Store下载应用程序时&#xff0c;它们都是已安装的iOS应用&#xff08;IPA&#xff09;存储在设备上。这些应用程序通常带有保护的代码和资源&#xff0c;以限制用户对其进行修改或者逆向工程。 然而&#xff0c;有时候&#xff0c;为了进行调试、制作插件或者学习…

登高不系安全带自动识别

登高不系安全带自动识别采用yolov8深度学习算法框架模型&#xff0c;登高不系安全带自动识别能够自动检测和识别登高作业人员是否佩戴安全带&#xff0c;过滤其他类似物体的干扰。登高不系安全带自动识别发现有人员未佩戴安全带&#xff0c;将立即触发预警。根据YOLO的设计&…

【算法训练-模拟】模拟设计LRU缓存结构

废话不多说&#xff0c;喊一句号子鼓励自己&#xff1a;程序员永不失业&#xff0c;程序员走向架构&#xff01;本篇Blog的主题是LRU缓存结构设计&#xff0c;这类题目出现频率还是很高的&#xff0c;几乎所有大厂都常考。 当然面对这道题&#xff0c;首先要讲清楚LRU是干什么…

新SDK平台下载开源全志V853的SDK

获取SDK SDK 使用 Repo 工具管理&#xff0c;拉取 SDK 需要配置安装 Repo 工具。 Repo is a tool built on top of Git. Repo helps manage many Git repositories, does the uploads to revision control systems, and automates parts of the development workflow. Repo is…

Redis数据结构:Zset类型全面解析

Redis&#xff0c;作为一种高性能的键值对数据库&#xff0c;因其丰富的数据类型和高效的性能而受到了广泛的关注和使用。在 Redis 的五种主要数据类型中&#xff0c;Zset&#xff08;有序集合&#xff09;类型可能是最复杂&#xff0c;但也是最强大的一种。Zset 不仅可以存储键…

Web 开发 Django 模板

上次为大家介绍了 Django 的模型和自带的管理工具&#xff0c;有了这个工具就可以全自动地根据模型创建后台管理界面&#xff0c;以供网站管理者更方便的管理网站数据。有了网站数据&#xff0c;那怎么样更方便又好看的展示给用户看呢&#xff1f;目前流行的 Web 框架基本都采用…

ssm端游游戏账号销售管理系统源码和论文

ssm端游游戏账号销售管理系统源码和论文069 开发工具&#xff1a;idea 数据库mysql5.7 数据库链接工具&#xff1a;navcat,小海豚等 技术&#xff1a;ssm 摘 要 互联网发展至今&#xff0c;无论是其理论还是技术都已经成熟&#xff0c;而且它广泛参与在社会中的方方面面…

基于java swing和mysql实现的仓库商品管理系统(源码+数据库+运行指导视频)

一、项目简介 本项目是一套基于java swing和mysql实现的仓库商品管理系统&#xff0c;主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的Java学习者。 包含&#xff1a;项目源码、项目文档、数据库脚本等&#xff0c;该项目附带全部源码可作为毕设使用。 项目都经…

嵌入式学习笔记——ARM的编程模式和7种工作模式

ARM提供的指令集 ARM态-ARM指令集&#xff08;32-bit&#xff09; Thumb态-Thumb指令集&#xff08;16-bit&#xff09; Thumb2态-Thumb2指令集&#xff08;16 & 32 bit&#xff09; Thumb指令集是对ARM指令集的一个子集重新编码得到的&#xff0c;指令长度为16位。通常在…

【Spring Boot】数据库持久层框架MyBatis — MyBatis简介

MyBatis简介 本节首先会介绍什么是ORM、什么是MyBatis、MyBatis的特点以及核心概念&#xff0c;最后介绍MyBatis是如何启动、如何加载配置文件的&#xff1f; 1.什么是ORM ORM&#xff08;Object Relational Mapping&#xff0c;对象关系映射&#xff09;是为了解决面向对象…

高亮img、pdf重点部分(html2canvas、pdfjs-dist、react-pdf)

可用业务场景 报销单据审批中&#xff0c;高亮发票部分 需求 后台返回一张图片或者pdf、返回一组坐标&#xff0c;坐标类型[number,number,number,number]&#xff0c;分别代表了x、y、width、height。需要根据坐标在图片上高亮出来坐标位置。如下图 高亮的坐标是&#xff1…

linux————keepalived+LVS(DR模式)

一、作用 使用keepalived解决LVS的单点故障 高可用集群 二、 调度器配置 环境 两台LVS服务 一主一备 两台web服务 采用nginx &#xff08;实现LVS负载均衡&#xff09; 服务ip 主LVS 192.168.100.3 备LVS 192.168.100.6 web1 192.…

创作2周年纪念日-特别篇

创作2周年纪念日-特别篇 1. 与CSDN的机缘2. 收获3. 憧憬 1. 与CSDN的机缘 很荣幸&#xff0c;在大学时候&#xff0c;能够接触到CSDN这样一个平台&#xff0c;当时对嵌入式开发、编程、计算机视觉等内容比较感兴趣。后面一个很偶然的联培实习机会&#xff0c;让我接触到了Pych…

中国平台软件市场研究报告:OceanBase为金融行业国产分布式数据库销售额第一

近日&#xff0c;《2022-2023年度中国平台软件市场研究报告》&#xff08;以下简称“报告”&#xff09;发布&#xff0c;报告对包括数据库、操作系统等在内的平台软件市场发展进行了分析。报告指出&#xff0c;在对平台软件需求增长最快的金融行业&#xff0c;OceanBase已占据…

音频母带制作::AAMS V4.0 Crack

自动音频母带制作简介。 使用 AAMS V4 让您的音乐听起来很美妙&#xff01; 作为从事音乐工作的音乐家&#xff0c;您在向公众发布材料时需要尽可能最好的声音&#xff0c;而为所有音频扬声器系统提供良好的商业声音是一项困难且耗时的任务。AI掌握的力量&#xff01; 掌控您…

Android studio APK切换多个摄像头(Camera2)

1.先设置camera的权限 <uses-permission android:name"android.permission.CAMERA" /> 2.布局 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas.android.com/apk/res/android"and…

Spring redis使用报错Read timed out排查解决

文章目录 使用场景报错信息解决方式 使用场景 我们使用redis作为缓存服务&#xff0c;缓存一些业务数据&#xff0c;如路口点位信息、渠化信息、设备信息等有一些需要实时计算的数据&#xff0c;缓存在redis里&#xff0c;如实时信号周期相位、周期内过车数量等有需要不同服务…

docker高级(redis集群三主三从)

1. 新建6个docker容器redis实例 docker run -d --name redis-node-1 --net host --privilegedtrue -v /redis/share/redis-node-1:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6381docker run -d --name redis-node-2 --net host --privilegedtrue -v /…

JVM 访问对象的两种方式

Java 程序会通过栈上的 reference 数据来操作堆上的具体对象。由于 reference 类型在《Java 虚拟机规范》里面只规定了它是一个指向对象的引用&#xff0c;并没有定义这个引用应该通过什么方式去定位、访问到堆中对象的具体位置&#xff0c;所以对象访问方式也是由虚拟机实现而…

酒店资产如何管理提升资产利用效率

酒店资产管理系统是一种专门为酒店行业设计的管理软件&#xff0c;可以帮助酒店实现资产的全生命周期管理。一个好的酒店资产管理系统应该具备以下功能&#xff1a;  资产登记&#xff1a;可以对酒店的各种资产进行登记&#xff0c;包括房间、家具、设备等&#xff0c;记录资…