本文实例讲述了Python scipy的二维图像卷积运算与图像模糊处理操作。分享给大家供大家参考,具体如下:
二维图像卷积运算
一 代码
import numpy as np
from scipy import signal, misc
import matplotlib.pyplot as plt
image = misc.ascent()#二维图像数组,lena图像
w = np.zeros((50,50))#全0二维数组,卷积核
w[0][0]=1.0#修改参数,调整滤波器
w[49][25]=1.0#可以根据需要调整
image_new = signal.fftconvolve(image, w)#使用FFT算法进行卷积
plt.figure()
plt.imshow(image_new)#显示滤波后的图像
plt.gray()
plt.title('Filtered image')
plt.show()
二 运行结果
图像进行模糊处理
一 代码
import numpy as np
from scipy import signal, misc
import matplotlib.pyplot as plt
image = misc.ascent()
w = signal.gaussian(50,10.0)
image_new = signal.sepfir2d(image, w, w)
plt.figure()
plt.imshow(image_new)#显示滤波后的图像
plt.gray()
plt.title('Filtered image')
plt.show()
二 运行结果
希望本文所述对大家Python程序设计有所帮助。