problem
- 给定一个n*m的网格,每条边上有一个权值
- 给定每个机器人的出发位置和目标位置
- 求权值最大
solution
- 拆边,每条边拆成2条,第一条容量1,费用c[i],第二条容量inf,费用0;
- 建超级源汇(s到每个出发位置容量1,费用0,每个目标位置到t容量1,费用0),跑最大费用最大流即可
最后,输入有点毒。。。
codes
#include<iostream>
#include<algorithm>
#include<queue>
#include<cstring>
using namespace std;const int N = 1100, M = 100010, inf = 1<<30;//Grape
int tot=1, head[N], Next[M], ver[M], cap[M], cost[M];
void AddEdge(int x, int y, int z, int c){//正向边,初始容量z,单位费用cver[++tot] = y, cap[tot] = z, cost[tot] = c;Next[tot] = head[x], head[x] = tot;//反向边,初始容量0,单位费用-c,与正向边成对存储ver[++tot] = x, cap[tot] = 0, cost[tot] = -c;Next[tot] = head[y], head[y] = tot;
}
//Cost flow
int s, t, incf[N], pre[N];
int dist[N], vis[N];
bool spfa(){queue<int>q;memset(dist,0xcf,sizeof(dist));//-infmemset(vis,0,sizeof(vis));q.push(s); dist[s]=0; vis[s]=1;incf[s] = 1<<30; //到s为止的增广路上各边的最小的剩余容量while(q.size()){int x = q.front(); q.pop(); vis[x] = 0;for(int i = head[x]; i; i = Next[i]){if(!cap[i])continue; //剩余容量为0,不再残量网络中,不遍历int y = ver[i];if(dist[y]<dist[x]+cost[i]){//流量都为1,不用乘dist[y] = dist[x]+cost[i];incf[y] = min(incf[x], cap[i]);pre[y] = i;//记录前驱,用于找方案if(!vis[y])vis[y]=1, q.push(y);}}}if(dist[t] == 0xcfcfcfcf)return false;//汇点不可达,已求出最大流return true;
}
int MaxCostMaxflow(){int flow = 0, cost = 0;while(spfa()){int x = t;while(x != s){int i = pre[x];cap[i] -= incf[t];cap[i^1] += incf[t];//成对存储x = ver[i^1];}flow += incf[t];cost += dist[t]*incf[t];}return cost;
}//Timu
int a, b, n, m, mp[N][N];
void input(){cin>>a>>b;cin>>n>>m;s = 0, t = (n+1)*(m+1)+1;int cnt = 0;for(int i = 0; i <= n; i++)for(int j = 0; j <= m; j++)mp[i][j] = ++cnt;for(int i = 0; i <= n; i++){for(int j = 0; j < m; j++){int x; cin>>x;AddEdge(mp[i][j],mp[i][j+1],1,x);AddEdge(mp[i][j],mp[i][j+1],inf,0);}}for(int j = 0; j <= m; j++){for(int i = 0; i < n; i++){int x; cin>>x;AddEdge(mp[i][j],mp[i+1][j],1,x);AddEdge(mp[i][j],mp[i+1][j],inf,0);}}for(int i = 0; i < a; i++){int x, y, z; cin>>z>>x>>y;AddEdge(s,mp[x][y],z,0);}for(int i = 0; i < b; i++){int x, y, z; cin>>z>>x>>y;AddEdge(mp[x][y],t,z,0);}return ;
}int main(){ios::sync_with_stdio(false);input();cout<<MaxCostMaxflow()<<'\n';return 0;
}