制备pdms膜的方法_船体用钢板基底超疏水表面的制备和性能

鲨鱼皮具有神奇的微纳双层结构,其微米级肋条状结构在水中的整流效果可减小水的阻力。纳米级刺状突起或刚毛具有疏水特性,使植物抱子很难附着其上,海藻等植物也不能在其表面生长[1,2]。这种微纳结构及其疏水性的共同作用,使其具有优异的减阻和抗附着性能。

近年来,超疏水表面减阻己成为研究的热点。张希等制备出具有微米级树枝状分形结构和纳米级精细结构的超疏水金纳米结构。江雷等采用模板印刷法制得了具有玫瑰花花瓣结构的聚二甲基硅氧烧(PDMS)薄膜,该薄膜具有高静态接触角。与单纯具有微米或纳米结构的PDMS膜相比,用激光加工技术制备的PDMS超疏水薄膜具有更大的接触角和更小的滚动角。Hsieh等将二氧化铁、氧化辞纳米颗粒和低表面能的全氟短基甲基丙烯酸共聚物覆盖在不同粗糙度的表面,形成的微纳双层仿生结构具有超疏水性。粟常红等将喷砂粗糙化处理的铝片经过植入纳米二氧化硅形成微纳双层仿生结构,接触角高达173。在微纳结构超疏水表面构造中,纳米材料具有巨大的优势,即对空气的捕获相对容易,且空气在其表面的含量相对较高,有利于使复合表面获得较低的表面能。本文采用激光加工技术和SiO2纳米粒子构建微纳双层仿生结构,制备超疏水船体钢板表面。

1实验方法

溶液的制备:(1)环氧树脂溶液的配备:称取50mL丙酣溶液置于烧杯中,向烧杯中分别滴加5g环氧树脂和1g聚眈胶树脂井搅拌均匀,最后滴加0.1g2,4,6二甲硫基3甲基对苯二肢(促进剂, 95%);(2)SiO2分散液的配备:称取2g粒径为20m的纳米SiO2,将其溶解在0.1L的无水乙醇中,并滴加0.5g α-氨丙基甲基二乙氧基硅炕(偶联剂, 97%), 超声分散3h。最后把制得的0.33mol/L的SiO2分散液分别稀释为0.017mol/L、0.042mol/L、0.083mol/L、0.167mol/L.0.25mol/L。(3)低表面能溶液的配制:称取0.05g的全氟类基三乙氧基硅炕(PFO,97%)溶于0.1L乙醇中并搅拌均匀。

试样的制备:(1)构建表面微结构:用线切割机将Q235A级船体用钢板切成只寸为lOmmxlOmm的试样,并用预磨机和抛光机将表面研磨光滑。用HGL-LSYSOF型激光打标机对其进行表面微结构加工,构建间距为lOO?m、夹角为90°的网格结构:(2)构建表面微纳结构:将配制的环氧树脂溶液旋涂于具有微结构的试样表面,并在室温下风干30min。向涂有环氧树脂溶液的试样表面分别滴加0.017mol/L、0.042mol/L、0.083mol/L、0.167mol/L、0.25mol/L、0.33mol/L的SiO2分散液,并置于温度为100℃的干燥箱中5h。取出试样并向每个试样表面滴加低表面能含氟聚合物PFO修饰溶液,再置于100℃干燥箱中5h。

用PhillipsXL30型扫描电子显微镜观察涂层的SEM形貌;用LEXTOLS4000激光共焦显微镜观察试样的表面三维形貌;用HOMMELTESTERT6000粗糙度测量仪测量试样的表面粗糙度;用Easy-Drop型接触角测量仪和2μL水滴测定试样表面的接触角。

2结果与讨论

2.1试样的表面形貌

由图1可以看出,试样表面具有规则的微结构,最大高度差为66.2阳。在激光加工表面涂覆SiO2分散液后的SEM形貌如图2所示,可见表面具有疏松多孔的纳米级结构。钢板表面经激光加工并涂覆不同浓度SiO2分散液的表面粗糙度,列于表1。随着SiO2浓度的增大,轮廓的算术平均偏差凡值增大,即表面粗糙度增大。但当SiO2浓度大于0.167mol/L时,在干燥箱烘干过程中有SiO2结晶析出,使SiO2分散液的浓度降低,因此最大SiO2的浓度为0.167mol/L。

SiO2分散液中的硅烷是含硅填料的首选表面填料剂,硅皖的羟基与SiO2表面的起基脱水缩舍。基团X可水解成硅烷醇,其反应式为YRSiX2+2H20→YRSi(OH)2+2HX. 硅烷醇与纳米SiO2表面上的羟基脱水缩合,形成共价键,使其聚集形态明显减小。

c336df3160d4d26f1a0fda15376647cb.png

图1 激光加工试样的表面三维形貌

94ed6084bec9803300022ef1ec7dbf4c.png

图2 涂层的SEM形貌

0b34f628856e599a2bbe25e9d9f327b3.png

Y是与不同涂料树脂有较强的反应能力的有机官能团,趋向于有机表面,二者交联固化,从而达到硅烷把纳米SiO2表面和树脂基体偶联在一起的效果. 硅烷醇表面未能完全反应的羟基之间还可以相互脱水缩合形成共价键,形成相互交联的网状结构,提高表面涂层的稳定性。

图3为涂层的XPS图谱图中有明显的Si和O元素峰,证明在该表面己覆盖一层SiO2。

d5bfa01dcea7e30292418e3c9be242cc.png

图3 涂层的XPS图谱

2.2试样的接触角

抛光的钢板表面接触角约为70°。经激光加工后其接触角接近0°,形成超亲水表面。用低表面能含氟聚合物PFO修饰后,表面接触角可达到121.0°,形成疏水表面,但是只有单一的微米级结构。在抛光钢板表面涂覆0.167mol/LSiO2分散液,再用低表面能含氟聚合物PFO修饰,接触角为152.4°,这种表面仅有单一的纳米级结构。由此可见,纳米结构对具有高接触角的超疏水表面起着重要作用。

在激光加工表面涂覆了不同浓度SiO2分散液后,再用低表面能含氟聚合物PFO修饰,表面接触角均大于150°,形成了具有微纳双层结构的超疏水表面。同时,随着SiO2浓度的提高接触角增大,如图4所示。SiO2的浓度为0.167mol/L,其接触角可达168.2°。这表明,纳米SiO2的浓度越高,接触角越大。与具有单一的微米或纳米结构的表面相比较,这种具有微纳双层结构的表面具有更大的接触角和更强的疏水性。

be8ea8953337d33131effd1698f953e6.png

图4 SiO2浓度对接触角的影响

将抛光钢板表面用激光加工,再用低表面能含氟聚合物PFO修饰后,只有单一的微米级结构,表面沟槽间的距离较大,液体渗入到表面粗糙结构中,符合Wenzel模型。由于液滴渗入沟槽中,无法获得很大的接触角,因此接触角只达到121.0°。在激光加工表面涂覆了不同浓度SiO2分散液后,形成了具有微纳双层结构的表面,大量SiO2粒子产生的纳米级凸起结构使液滴与钢板表面的接触面积最小化,液滴不易侵入表面结构而截留空气产生气膜,符合Cassie模型。当SiO2纳米粒子的含量较低时,粒子间隙大于粒子本身的尺寸,SiO2纳米粒子在基底上随机分布,不利于截留空气。随着SiO2纳米粒子含量的增大,纳米粒子重叠堆积,形成了较多的微孔,有助于空气的截留,因而接触角增大。可见调节纳米粒子的浓度,可调控表面的润湿性能。

2.3试样的滚动角

将试样放平并在试样表面滴5μL水滴,然后向试样一侧的底部逐片插入塞规,直至试样表面液滴滚落为止。记录塞规厚度,已知试样长为lOmm,可以计算出液滴滚落时试样倾斜的角度,此即该试样的滚动角。接触角、滚动角是描述疏水性质的两个方面,但是两者之间没有直接关系。接触角较大的表面其滚动角不一定小。对需要具有减阻和抗附着性能的船体钢板表面具有较小的滚动角比具有更大的接触角更有意义阴。静态接触角对减阻效果的影响较小,动态接触角是决定减阻效果的重要因素口7]。舰船钢板的表面能(接触角的大小)决定了海生物在其表面的附着强度,表面能越低(接触角越大)海生物附着越困难,即使有附着其强度也不太。当舰船以一定速度开动时,小滚动角有助于液滴将附着在其表面的海生物带走。因此,理想的舰船钢板表面应该具有极小的滚动角。

激光加工后经低表面能含氟聚合物PFO修饰,但没有涂覆SiO2分散液的试样表面(表面接触角为121.0°的单一微米级结构疏水表面),即使将试样坚直成90,液滴也不滚落(图5a)。在抛光铜板表面涂覆0.167mol/L SiO2分散液,再经低表面能含氟聚合物PFO修饰的试样表面(接触角为152.4°的单一的纳米级结构超疏水表面),将试样坚直成90。,液滴仍然不滚落(图5b)。

56898e6c236c61a96f3391b84ed9b5bb.png

图5 单一结构表面水滴状态

而在激光加工表面涂覆不同浓度SiO2分散液后,再经低表面能含氟聚合物PFO修饰,形成的超疏水表面的滚动角显著减小且随着SiO2浓度的增大而减小(图6)。当SiO2的含量为0.167mol/L,滚动角仅为0.29°。

8299b6fdfeff762c6f5739468d9cff6a.png

图6 SiO2浓度对滚动角的影响

根据2.2节的分析,对于激光加工后经低表面能含氟聚合物PFO修饰的表面(接触角121.0°),由于没有涂覆SiO2分散液,这种表面只有单一的微米级结构,表面符合Wenzel模型的湿接触状态,液体渗入到表面粗糙结构中形成连续的三相接触线而具有较大的粘滞力,水滴以浸润模式接触表面,就像是被“钉”在表面上。此时即使将表面竖直放置,液滴也不滚动。对于在抛光钢板表面直接涂覆0.167mol/LSiO2分散液,再经低表面能含氟聚合物PFO修饰的仅有单一纳米结构的超疏水表面(接触角152.4°),由于纳米级沟槽很浅难以截留气体,液体进入纳米级沟槽中,这个表面也符合Wenzel模型。表面对液滴的附着性很强,即使将表面坚直放置液滴也不会滚动。这进一步证实了接触角、滚动角两者之间没有直接关系,超疏水表面并不一定都具有小的滚动角。但是,同样是超疏水表面,即使接触角相差很小(接触角为152.4°的具有单一纳米结构和接触角为153.4°的具有微纳双层结构),其滚动角却相差悬殊(90和3.15)。即与接触角比较,表面的微纳双层结构对滚动角的影响更显著。具有微纳双层结构的表面符合Cassie状态,水滴与固体表面发生不连续接触导致粘滞力很小,这将产生较小的滚动角。由此可见,微纳双层结构改变了液滴对粗糙表面上凹槽的填充度,同时导致勃附属性有所差异,使单一纳米结构表面和微纳双层结构表面的滚动角有很大的区别。

图6表明,随着SiO2纳米粒子含量的提高,具有微纳双层结构的表面滚动角减小。其原因是,液滴滚动角的大小由后接触线的状态决定,并且滚动角的大小与最外缘三相接触线内的固液接触状态、以及前接触线状态无关。为了得到滚动角尽可能小的超疏水表面,减小后接触线长度是至关重要的。随着SiO2纳米粒子含量的提高接触角增大,固液接触范围减小,后接触线变短,更有利于液滴的运动,因此滚动角减小。这表明纳米与微米结构相结合的双层结构可以显著地减小液滴在表面的滚动角,这对于抗附着性能尤其重要。

3结论

1.将SiO2纳米粒子分散在低表面能含氟聚合物中,并将其涂覆在激光加工的表面微结构上,可构建微纳双层仿生结构。

2.与具有单一的微米或纳米结构的表面比较,具有微纳双层结构的表面可以获得更大的接触角。接触角与纳米SiO2浓度有关,浓度越高其接触角越大。

3.单一微米结构和纳米结构的表面符合Wen?zel模型,即使将表面坚直放置液滴也不会滚落。微纳双层结构的表面符合Cassie模型,其接触角大而滚动角小。且滚动角随着SiO2浓度的提高而诫小。

免责声明:本网站所转载的文字、图片与视频资料版权归原创作者所有,如果涉及侵权,请第一时间联系本网删除。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/567847.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

递归题型解析

#include<iostream> using namespace std; int foo(int n) {if (n < 1)return n;return (foo(n - 1) foo(n - 2)); } int main() {printf("%d\n", foo(5));return 0; } 解析&#xff1a; foo(5)foo(4)f00(3)foo(3)foo(2)foo(3)2foo(3)foo(2)2(foo(2)foo(1…

64位c语言调用32位glibc,glibc fclose源代码阅读及伪造_IO_FILE利用fclose实现任意地址执行...

简介最近学习了一下_IO_FILE的利用&#xff0c;刚好在pwnable.tw上碰到一道相关的题目。拿来做了一下&#xff0c;遇到了一些困难&#xff0c;不过顺利解决了&#xff0c;顺便读了一波相关源码&#xff0c;对_IO_FILE有了更深的理解。文章分为三部分&#xff0c;分别是利用原理…

戴尔笔记本电脑开机黑屏怎么办_戴尔笔记本电脑充不进电怎么办

笔记本电脑电池充不进电要怎么办呢&#xff1f;笔记本电脑之所以这么受欢迎&#xff0c;是因为笔记本有配备电池&#xff0c;能够在没有电源的情况下使用五六个小时。而电池的电用光后&#xff0c;就需要进行充电。不过有些用户反映说&#xff0c;自己的电池充不进电&#xff0…

IIS安装2个SSL_顶级域名0元撸-免费注册2个腾讯云域名 免费SSL证书

前言这两天折腾甜糖CDN&#xff0c;为了收益最大化申请了公网IP&#xff0c;于是顺带折腾了一下群晖外网访问。使用的DDNS方案是腾讯dnspod&#xff0c;注册一个便宜的顶级域名访问我的群晖&#xff0c;折腾过程中发现可以免费注册2个顶级域名&#xff0c;不敢独享发出来大家一…

三菱a系列motion软体_工控电缆如何制作?(以三菱PLC、触摸屏为例)

RS232接口的三菱Q系列PLC编程通讯电缆三菱GT11/GT15触摸屏RS232串口编程电缆三菱GT11/GT15触摸屏连接Q系列PLC电缆三菱GT11/GT15触摸屏连接FX2/FX2C/A/QnA系列PLC电缆三菱GT11/GT15 触摸屏连接FX3U/FX2N/FX1N系列PLC电缆FX2、A系列PLC到A970GOT人机介面连接电缆FX0s/FX0n/FX2n/…

电脑入门完全自学手册_「新书推荐」新能源汽车维修完全自学手册

《新能源汽车维修完全自学手册》作者&#xff1a;广州瑞佩尔信息科技有限公司 、胡欢贵售价&#xff1a;85.00上市时间&#xff1a;2020年7月本书内容分为 8 章, 第 1 章为高压安全系统, 主要介绍了新能源汽车中高压安全防护装置构造以及维修所需的安全防护工具、 安全作业规范…

C/C++混淆点-左移右移操作符

对一个数实行左移或者右移操作&#xff0c;即先把操作数转换为二进制&#xff0c;然后左移&#xff08;>>&#xff09;即从左到右开始舍弃&#xff0c;右移&#xff08;<<&#xff09;即从各位之后开始加0。最后再转换为十进制。 #include<iostream> using…

ar路由器 pppoe下发ipv6 dns_IPv6网络设置各种疑难杂症诊疗区

1、Windows电脑系统IPv6无网络访问权限怎么解决&#xff1f;Win7系统下连接IPv6无网络访问权限的解决方法&#xff08;1&#xff09;首先修复网络连接&#xff0c;Win XP操作系统的网络连接有“修复”选项&#xff0c;Win7没有&#xff0c;不过可以使用“诊断”选项&#xff0c…

c语言判断化学方程式,下列是某同学写的六个化学方程式:①Mg+O2点燃.MgO2②C+O2点燃.CO...

化学方程式是最重要的化学语言&#xff0c;正确、熟练地书写化学方程式是学习化学必需具备的重要基本功。怎样书写化学方程式?1.要遵循两个基本原则(1)以客观事实为基础化学方程式既然是化学反应的表达形式&#xff0c;显然&#xff0c;有某一反应存在&#xff0c;才能用化学方…

tensorboard ckpt pb 模型的输出节点_“技术需求”与“技术成果”项目之间关联度计算模型 TOP10 baseline...

竞赛网址&#xff1a;传送门线上分数&#xff1a;0.78490746000&#xff0c;目前可以进入前10参考了苏神的代码&#xff0c;非常感谢&#xff1a;传送门调参技巧&#xff1a;传送门中文bert权重&#xff1a;传送门#! -*- coding:utf-8 -*-

白盒测试六种方法案例分析

1、语句覆盖 2、判定覆盖 3、条件覆盖 4、判定/条件覆盖 5、组合覆盖 6、路径覆盖

android 启动优化方案,Android 项目优化(五):应用启动优化

介绍了前面的优化的方案后&#xff0c;这里我们在针对应用的启动优化做一下讲解和说明。一、App启动概述一个应用App的启动速度能够影响用户的首次体验&#xff0c;启动速度较慢(感官上)的应用可能导致用户再次开启App的意图下降&#xff0c;或者卸载放弃该应用程序。应用程序启…

排序总结

排序总结 快速排序基本思路&#xff1a; 基本思想&#xff1a; 1&#xff09;选择一个基准元素,通常选择第一个元素或者最后一个元素, 2&#xff09;通过一趟排序讲待排序的记录分割成独立的两部分&#xff0c;其中一部分记录的元素值均比基准元素值小。另一部分记录的 元素值…

iphone最新款手机_苹果用户不换安卓手机的8点原因,最后一点最关键

快速的更新换代似乎已经成为了安卓手机的发展规律。与之相比&#xff0c;苹果公司的发展却逐渐从之前的“特立独行”变为了“固步自封”&#xff0c;产品风格也由原先的桀骜不驯&#xff0c;转变为现在向市场的不断妥协。即便如此&#xff0c;仍旧有很大一部分苹果用户没有考虑…

windows和android双系统平板,Windows平板打造双系统爽玩安卓APP

随着微软的surface更新换代&#xff0c; Windows平板是越来越受欢迎&#xff0c;在工作上&#xff0c;win平板处理办公文件和兼容性的优点得到了大家认可。但是在视听娱乐等休闲方面&#xff0c;始终还是没有安卓平板来的好用&#xff0c;而且安卓平台有大量好玩的APP&#xff…

ilitek win10 触摸屏驱动_想做多大尺寸触摸框找融创方圆定制触摸屏工厂

融创方圆定制大尺寸拼接屏多点触摸屏&#xff0c;大屏拼接屏红外多点触摸框&#xff0c;触摸拼接屏&#xff0c;拼接触摸屏&#xff0c;触摸拼接墙&#xff0c;拼接墙触摸屏&#xff0c;我们大尺寸多点触摸框反应灵敏&#xff0c;无盲区&#xff0c;无鬼点&#xff0c;无漂移&a…

most recent call last 报错_视频|救援情景剧、创意快闪……400w+人次为重庆这场消防宣传活动打call...

鼎牛配资app西安笑赢配资大赚配资公司推选简配资乐赢资本 昔日&#xff0c;两江新区2020年“119”消防宣扬月启动典礼正在重庆欢欣谷盛大举办。两江新区消防供图华龙网-新重庆客户端 收华龙网-新重庆客户端11月4日18时40分讯(记者 李华裔)按照实在救济动作改编的情形剧、小伴侣…

html中使用什么标签做的导航栏_自媒体人如何自己建立一个手机网站,超简单,任何人都能做...

随着移动互联网的兴起&#xff0c;越来越多的公司、个人把展示的内容转到了手机网站上&#xff0c;学会制作手机网站就成了大家关注的热点。传统的网页制作工具制作电脑端的网站功能很强大&#xff0c;但手机网站由于手机屏幕大小和CPU处理能力较弱&#xff0c;对网站的要求与传…

哈夫曼编码和带权路径计算

哈夫曼树是一种带权路径长度最短的二叉树&#xff0c;也称为最优二叉树。下面用一幅图来说明。 它们的带权路径长度分别为&#xff1a; 图a&#xff1a; WPL5*27*22*213*254 图b&#xff1a; WPL5*32*37*213*148 可见&#xff0c;图b的带权路径长度较小&#xff0c;我们可以…

codesys raspberry pi_11月7日|Pi第四次减产来袭?4点浅析中文区用户关心的问题

手里有派&#xff0c;心中有爱这两天一些派友私下找我在抱怨&#xff0c;也有用户在我们的微信社群发出所谓的灵魂询问&#xff1a;“主网在哪里&#xff1f;&#xff1f;制宪大会在哪里&#xff1f;停产或者减产在哪里&#xff1f;kyc在哪里&#xff1f;”我简单的回应一下&am…