python类怎么实例化rnn层_Python backend.rnn方法代码示例

本文整理汇总了Python中keras.backend.rnn方法的典型用法代码示例。如果您正苦于以下问题:Python backend.rnn方法的具体用法?Python backend.rnn怎么用?Python backend.rnn使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块keras.backend的用法示例。

在下文中一共展示了backend.rnn方法的16个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: call

​点赞 6

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import rnn [as 别名]

def call(self, x, mask=None):

input_shape = self.input_spec[0].shape

en_seq = x

x_input = x[:, input_shape[1]-1, :]

x_input = K.repeat(x_input, input_shape[1])

initial_states = self.get_initial_states(x_input)

constants = super(PointerLSTM, self).get_constants(x_input)

constants.append(en_seq)

preprocessed_input = self.preprocess_input(x_input)

last_output, outputs, states = K.rnn(self.step, preprocessed_input,

initial_states,

go_backwards=self.go_backwards,

constants=constants,

input_length=input_shape[1])

return outputs

开发者ID:zygmuntz,项目名称:pointer-networks-experiments,代码行数:20,

示例2: _forward

​点赞 6

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import rnn [as 别名]

def _forward(x, reduce_step, initial_states, U, mask=None):

'''Forward recurrence of the linear chain crf.'''

def _forward_step(energy_matrix_t, states):

alpha_tm1 = states[-1]

new_states = reduce_step(K.expand_dims(alpha_tm1, 2) + energy_matrix_t)

return new_states[0], new_states

U_shared = K.expand_dims(K.expand_dims(U, 0), 0)

if mask is not None:

mask = K.cast(mask, K.floatx())

mask_U = K.expand_dims(K.expand_dims(mask[:, :-1] * mask[:, 1:], 2), 3)

U_shared = U_shared * mask_U

inputs = K.expand_dims(x[:, 1:, :], 2) + U_shared

inputs = K.concatenate([inputs, K.zeros_like(inputs[:, -1:, :, :])], axis=1)

last, values, _ = K.rnn(_forward_step, inputs, initial_states)

return last, values

开发者ID:UKPLab,项目名称:elmo-bilstm-cnn-crf,代码行数:22,

示例3: _backward

​点赞 6

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import rnn [as 别名]

def _backward(gamma, mask):

'''Backward recurrence of the linear chain crf.'''

gamma = K.cast(gamma, 'int32')

def _backward_step(gamma_t, states):

y_tm1 = K.squeeze(states[0], 0)

y_t = batch_gather(gamma_t, y_tm1)

return y_t, [K.expand_dims(y_t, 0)]

initial_states = [K.expand_dims(K.zeros_like(gamma[:, 0, 0]), 0)]

_, y_rev, _ = K.rnn(_backward_step,

gamma,

initial_states,

go_backwards=True)

y = K.reverse(y_rev, 1)

if mask is not None:

mask = K.cast(mask, dtype='int32')

# mask output

y *= mask

# set masked values to -1

y += -(1 - mask)

return y

开发者ID:UKPLab,项目名称:elmo-bilstm-cnn-crf,代码行数:25,

示例4: call

​点赞 6

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import rnn [as 别名]

def call(self, x, mask=None):

input_shape = self.input_spec[0].shape

initial_states = self.get_initial_states(x)

constants = self.get_constants(x)

preprocessed_input = self.preprocess_input(x)

last_output, outputs, states = K.rnn(self.step, preprocessed_input,

initial_states,

go_backwards=False,

mask=mask,

constants=constants,

unroll=False,

input_length=input_shape[1])

if last_output.ndim == 3:

last_output = K.expand_dims(last_output, dim=0)

return last_output

开发者ID:marcellacornia,项目名称:sam,代码行数:20,

示例5: _forward

​点赞 6

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import rnn [as 别名]

def _forward(x, reduce_step, initial_states, U, mask=None):

"""Forward recurrence of the linear chain crf."""

def _forward_step(energy_matrix_t, states):

alpha_tm1 = states[-1]

new_states = reduce_step(K.expand_dims(alpha_tm1, 2) + energy_matrix_t)

return new_states[0], new_states

U_shared = K.expand_dims(K.expand_dims(U, 0), 0)

if mask is not None:

mask = K.cast(mask, K.floatx())

mask_U = K.expand_dims(K.expand_dims(mask[:, :-1] * mask[:, 1:], 2), 3)

U_shared = U_shared * mask_U

inputs = K.expand_dims(x[:, 1:, :], 2) + U_shared

inputs = K.concatenate([inputs, K.zeros_like(inputs[:, -1:, :, :])], axis=1)

last, values, _ = K.rnn(_forward_step, inputs, initial_states)

return last, values

开发者ID:kermitt2,项目名称:delft,代码行数:22,

示例6: _backward

​点赞 6

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import rnn [as 别名]

def _backward(gamma, mask):

"""Backward recurrence of the linear chain crf."""

gamma = K.cast(gamma, 'int32')

def _backward_step(gamma_t, states):

y_tm1 = K.squeeze(states[0], 0)

y_t = batch_gather(gamma_t, y_tm1)

return y_t, [K.expand_dims(y_t, 0)]

initial_states = [K.expand_dims(K.zeros_like(gamma[:, 0, 0]), 0)]

_, y_rev, _ = K.rnn(_backward_step,

gamma,

initial_states,

go_backwards=True)

y = K.reverse(y_rev, 1)

if mask is not None:

mask = K.cast(mask, dtype='int32')

# mask output

y *= mask

# set masked values to -1

y += -(1 - mask)

return y

开发者ID:kermitt2,项目名称:delft,代码行数:25,

示例7: step

​点赞 6

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import rnn [as 别名]

def step(self, input_energy_t, states, return_logZ=True):

# not in the following `prev_target_val` has shape = (B, F)

# where B = batch_size, F = output feature dim

# Note: `i` is of float32, due to the behavior of `K.rnn`

prev_target_val, i, chain_energy = states[:3]

t = K.cast(i[0, 0], dtype='int32')

if len(states) > 3:

if K.backend() == 'theano':

m = states[3][:, t:(t + 2)]

else:

m = K.tf.slice(states[3], [0, t], [-1, 2])

input_energy_t = input_energy_t * K.expand_dims(m[:, 0])

chain_energy = chain_energy * K.expand_dims(K.expand_dims(m[:, 0] * m[:, 1])) # (1, F, F)*(B, 1, 1) -> (B, F, F)

if return_logZ:

energy = chain_energy + K.expand_dims(input_energy_t - prev_target_val, 2) # shapes: (1, B, F) + (B, F, 1) -> (B, F, F)

new_target_val = K.logsumexp(-energy, 1) # shapes: (B, F)

return new_target_val, [new_target_val, i + 1]

else:

energy = chain_energy + K.expand_dims(input_energy_t + prev_target_val, 2)

min_energy = K.min(energy, 1)

argmin_table = K.cast(K.argmin(energy, 1), K.floatx()) # cast for tf-version `K.rnn`

return argmin_table, [min_energy, i + 1]

开发者ID:yongyuwen,项目名称:sequence-tagging-ner,代码行数:24,

示例8: call

​点赞 6

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import rnn [as 别名]

def call(self, x, mask=None, **kwargs):

input_shape = K.int_shape(x)

res = super(ShareableGRU, self).call(x, mask, **kwargs)

self.input_spec = [InputSpec(shape=(self.input_spec[0].shape[0],

None,

self.input_spec[0].shape[2]))]

if K.ndim(x) == K.ndim(res):

# A recent change in Keras

# (https://github.com/fchollet/keras/commit/a9b6bef0624c67d6df1618ca63d8e8141b0df4d0)

# made it so that K.rnn with a tensorflow backend does not retain shape information for

# the sequence length, even if it's present in the input. We need to fix that here so

# that our models have the right shape information. A simple K.reshape is good enough

# to fix this.

result_shape = K.int_shape(res)

if input_shape[1] is not None and result_shape[1] is None:

shape = (input_shape[0] if input_shape[0] is not None else -1,

input_shape[1], result_shape[2])

res = K.reshape(res, shape=shape)

return res

开发者ID:allenai,项目名称:deep_qa,代码行数:21,

示例9: call

​点赞 6

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import rnn [as 别名]

def call(self, x, mask=None):

# input_shape = (batch_size, input_length, input_dim). This needs to be defined in build.

read_output, initial_memory_states, output_mask = self.read(x, mask)

initial_write_states = self.writer.get_initial_states(read_output) # h_0 and c_0 of the writer LSTM

initial_states = initial_memory_states + initial_write_states

# last_output: (batch_size, output_dim)

# all_outputs: (batch_size, input_length, output_dim)

# last_states:

# last_memory_state: (batch_size, input_length, output_dim)

# last_output

# last_writer_ct

last_output, all_outputs, last_states = K.rnn(self.compose_and_write_step, read_output, initial_states,

mask=output_mask)

last_memory = last_states[0]

if self.return_mode == "last_output":

return last_output

elif self.return_mode == "all_outputs":

return all_outputs

else:

# return mode is output_and_memory

expanded_last_output = K.expand_dims(last_output, dim=1) # (batch_size, 1, output_dim)

# (batch_size, 1+input_length, output_dim)

return K.concatenate([expanded_last_output, last_memory], axis=1)

开发者ID:pdasigi,项目名称:neural-semantic-encoders,代码行数:25,

示例10: call

​点赞 5

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import rnn [as 别名]

def call(self, x, mask=None):

input_shape = self.input_spec[0].shape

if self.layer.unroll and input_shape[1] is None:

raise ValueError('Cannot unroll a RNN if the '

'time dimension is undefined. \n'

'- If using a Sequential model, '

'specify the time dimension by passing '

'an `input_shape` or `batch_input_shape` '

'argument to your first layer. If your '

'first layer is an Embedding, you can '

'also use the `input_length` argument.\n'

'- If using the functional API, specify '

'the time dimension by passing a `shape` '

'or `batch_shape` argument to your Input layer.')

initial_states = (self.layer.states if self.layer.stateful else

self.layer.get_initial_states(x))

constants = self.get_constants(x)

preprocessed_input = self.layer.preprocess_input(x)

last_output, outputs, states = K.rnn(

self.step, preprocessed_input, initial_states,

go_backwards=self.layer.go_backwards,

mask=mask,

constants=constants,

unroll=self.layer.unroll,

input_length=input_shape[1])

if self.layer.stateful:

updates = []

for i in range(len(states)):

updates.append((self.layer.states[i], states[i]))

self.add_update(updates, x)

return outputs if self.layer.return_sequences else last_output

开发者ID:codekansas,项目名称:gandlf,代码行数:37,

示例11: call

​点赞 5

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import rnn [as 别名]

def call(self, x, mask=None):

input_shape = self.input_spec[0].shape

# state format: [h(t-1), c(t-1), y(t-1)]

#h_0 = K.zeros_like(x[:, 0, :])

#c_0 = K.zeros_like(x[:, 0, :])

h_0 = K.reshape(x, (-1, self.input_dim))

c_0 = K.reshape(x, (-1, self.input_dim))

initial_states = [h_0, c_0]

#self.states = [None, None]

#initial_states = self.get_initial_states(x)

last_output, outputs, states = K.rnn(step_function=self.step,

inputs=x,

initial_states=initial_states,

go_backwards=self.go_backwards,

mask=mask,

constants=None,

unroll=self.unroll,

input_length=input_shape[1])

if self.return_sequences:

return outputs

else:

return last_output

开发者ID:bnsnapper,项目名称:keras_bn_library,代码行数:29,

示例12: call

​点赞 5

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import rnn [as 别名]

def call(self, x, mask=None):

# input shape: (nb_samples, time (padded with zeros), input_dim)

# note that the .build() method of subclasses MUST define

# self.input_spec with a complete input shape.

input_shape = self.input_spec[0].shape

if K._BACKEND == 'tensorflow':

if not input_shape[1]:

raise Exception('When using TensorFlow, you should define '

'explicitly the number of timesteps of '

'your sequences.\n'

'If your first layer is an Embedding, '

'make sure to pass it an "input_length" '

'argument. Otherwise, make sure '

'the first layer has '

'an "input_shape" or "batch_input_shape" '

'argument, including the time axis. '

'Found input shape at layer ' + self.name +

': ' + str(input_shape))

if self.layer.stateful:

initial_states = self.layer.states

else:

initial_states = self.layer.get_initial_states(x)

constants = self.get_constants(x)

preprocessed_input = self.layer.preprocess_input(x)

last_output, outputs, states = K.rnn(self.step, preprocessed_input,

initial_states,

go_backwards=self.layer.go_backwards,

mask=mask,

constants=constants,

unroll=self.layer.unroll,

input_length=input_shape[1])

if self.layer.stateful:

self.updates = []

for i in range(len(states)):

self.updates.append((self.layer.states[i], states[i]))

if self.layer.return_sequences:

return outputs

else:

return last_output

开发者ID:saurabhmathur96,项目名称:Neural-Chatbot,代码行数:43,

示例13: call

​点赞 5

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import rnn [as 别名]

def call(self, x, use_teacher_forcing=True, training=None):

# TODO: check that model is loading from .h5 correctly

# TODO: for now cannot be shared layer

# (only can it we use (or not use) teacher forcing in all cases simultationsly)

# this sequence is used only to extract the amount of timesteps (the same as in output sequence)

fake_input = x

if isinstance(x, list):

# teacher forcing for training

self.x_seq, self.y_true = x

self.use_teacher_forcing = use_teacher_forcing

fake_input = K.expand_dims(self.y_true)

else:

# inference

self.x_seq = x

self.use_teacher_forcing = False

# apply a dense layer over the time dimension of the sequence

# do it here because it doesn't depend on any previous steps

# therefore we can save computation time:

self._uxpb = _time_distributed_dense(self.x_seq, self.U_a, b=self.b_a,

dropout=self.dropout,

input_dim=self.input_dim,

timesteps=self.timesteps,

output_dim=self.units,

training=training)

last_output, outputs, states = K.rnn(

self.step,

inputs=fake_input,

initial_states=self.get_initial_state(self.x_seq)

)

return outputs

开发者ID:asmekal,项目名称:keras-monotonic-attention,代码行数:35,

示例14: step

​点赞 5

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import rnn [as 别名]

def step(self, input_energy_t, states, return_logZ=True):

# not in the following `prev_target_val` has shape = (B, F)

# where B = batch_size, F = output feature dim

# Note: `i` is of float32, due to the behavior of `K.rnn`

prev_target_val, i, chain_energy = states[:3]

t = K.cast(i[0, 0], dtype='int32')

if len(states) > 3:

if K.backend() == 'theano':

m = states[3][:, t:(t + 2)]

else:

m = K.slice(states[3], [0, t], [-1, 2])

input_energy_t = input_energy_t * K.expand_dims(m[:, 0])

# (1, F, F)*(B, 1, 1) -> (B, F, F)

chain_energy = chain_energy * K.expand_dims(

K.expand_dims(m[:, 0] * m[:, 1]))

if return_logZ:

# shapes: (1, B, F) + (B, F, 1) -> (B, F, F)

energy = chain_energy + K.expand_dims(input_energy_t - prev_target_val, 2)

new_target_val = K.logsumexp(-energy, 1) # shapes: (B, F)

return new_target_val, [new_target_val, i + 1]

else:

energy = chain_energy + K.expand_dims(input_energy_t + prev_target_val, 2)

min_energy = K.min(energy, 1)

# cast for tf-version `K.rnn

argmin_table = K.cast(K.argmin(energy, 1), K.floatx())

return argmin_table, [min_energy, i + 1]

开发者ID:keras-team,项目名称:keras-contrib,代码行数:28,

示例15: test_rnn_no_states

​点赞 5

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import rnn [as 别名]

def test_rnn_no_states(self):

# implement a simple RNN without states

input_dim = 8

output_dim = 4

timesteps = 5

_, x = parse_shape_or_val((32, timesteps, input_dim))

_, wi = parse_shape_or_val((input_dim, output_dim))

x_k = K.variable(x)

wi_k = K.variable(wi)

def rnn_fn(x_k, h_k):

assert len(h_k) == 0

y_k = K.dot(x_k, wi_k)

return y_k, []

last_y1, y1, h1 = ref_rnn(x, [wi, None, None], None,

go_backwards=False, mask=None)

last_y2, y2, h2 = K.rnn(rnn_fn, x_k, [],

go_backwards=False, mask=None)

assert len(h2) == 0

last_y2 = K.eval(last_y2)

y2 = K.eval(y2)

assert_allclose(last_y1, last_y2, atol=1e-05)

assert_allclose(y1, y2, atol=1e-05)

开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:30,

示例16: legacy_test_rnn_no_states

​点赞 5

# 需要导入模块: from keras import backend [as 别名]

# 或者: from keras.backend import rnn [as 别名]

def legacy_test_rnn_no_states(self):

# implement a simple RNN without states

input_dim = 8

output_dim = 4

timesteps = 5

input_val = np.random.random((32, timesteps, input_dim))

W_i_val = np.random.random((input_dim, output_dim))

def rnn_step_fn(k):

W_i = k.variable(W_i_val)

def step_function(x, states):

assert len(states) == 0

output = k.dot(x, W_i)

return output, []

return step_function

# test default setup

last_output_list = []

outputs_list = []

for k in BACKENDS:

rnn_fn = rnn_step_fn(k)

inputs = k.variable(input_val)

initial_states = []

last_output, outputs, new_states = k.rnn(rnn_fn, inputs,

initial_states,

go_backwards=False,

mask=None)

last_output_list.append(k.eval(last_output))

outputs_list.append(k.eval(outputs))

assert len(new_states) == 0

assert_list_pairwise(last_output_list, shape=False)

assert_list_pairwise(outputs_list, shape=False)

开发者ID:hello-sea,项目名称:DeepLearning_Wavelet-LSTM,代码行数:39,

注:本文中的keras.backend.rnn方法示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/563657.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vscode删除文件夹,VSCode:删除文件中的所有注释

Is there an easy way to delete all comments from an open file in VSCode? Preferably both line and block comments.Most interested in Java, but also Python and R.解决方案Easy way:Open extensions (ctrl-shift-x)type in remove comments in the search box.Instal…

放大镜_屏幕放大镜怎么样使用方法

首先,打开控制面板,然后找到并单击“显示”,然后启动放大镜。放大镜的放大倍率基于原始屏幕,而不是矢量放大倍率。有关放大镜的详细操作,请单击帮助按钮,其中有特定说明。捷径一:win 可以快速调…

python清空语句_怎么清除python编译器的语句

清除python编辑器的方法:1、下载清屏函数clearwindow.py,然后复制clearwindow.py文件,并放在Python安装目录PythonXLibidlelib下面2、在Python XLibidlelib目录下找到config-extensions.def(IDLE扩展的配置文件),用记事本打开&…

mysql字段是否存在_Mysql判断表字段或索引是否存在

判断字段是否存在:DROP PROCEDURE IF EXISTS schema_change;DELIMITER //CREATE PROCEDURE schema_change() BEGINDECLARE CurrentDatabase VARCHAR();SELECT DATABASE() INTO CurrentDatabase;IF NOT EXISTS (SELECT * FROM information_schema.columns WHERE tabl…

mysql取消主键_mysql如何删除主键?

当一个表中设置了主键之后,如果想要删除主键了要怎么做?下面本篇文章就给大家介绍MySQL删除主键的方法,希望对你们有所帮助。首先我们来看看删除主键的语法:ALTER TABLE TABLE_NAME DROP PRIMARY KEY;在MySQL中删除主键要考虑两种…

mysql 备份 windows_windows mysql 自动备份的几种方法

基于之前的文章方法,加入批处理命令即可实现自动备份。只是由于批处理命令中对于备份文件的名字按照时间命名比较特别,所以特别整理一文。1、复制date文件夹备份假想环境:MySQL 安装位置:C:\MySQL论坛数据库名称为:b…

mysql长事务慢查询解决方案_MySQL : 如何监控和处理慢查询与长事务 ?

什么是慢查询、长事务 ?慢查询 是指一条 SQL 的执行时间太长。比如在一个有100w条数据的表中,查询一条数据时未命中索引,从而通过全表扫描查询数据,这个查询会耗时很长。这就是一个 Long SQL 。类似,更新数据、删除数据…

mysql身份验证失败_SMTP身份验证失败PAM-MySQL无法进行身份验证

我正在使用Postfix构建邮件服务器,并设置身份验证以使用Postfixadmin检查数据库设置.我可以通过Courier IMAP进行身份验证,因为它可以正确地验证哈希密码,但我怀疑我的SASL PAM-MySQL SMTP身份验证机制不能.我在/var/log/mail.log中收到这些错误:pam_unix(smtp:auth…

二级数据库access和mysql_二级数据库access和mysql

{"moduleinfo":{"card_count":[{"count_phone":1,"count":1}],"search_count":[{"count_phone":4,"count":4}]},"card":[{"des":"阿里云数据库专家保驾护航,为用户…

mysql 从库可以写入吗_mysql主从库配置读写分离以及备份

1,什么是读写分离?其实就是将数据库分为了主从库,一个主库用于写数据,多个从库完成读数据的操作,主从库之间通过某种机制进行数据的同步,是一种常见的数据库架构。一个组从同步集群,通常被称为是…

用程序同步mysql数据库表_初次用Java写了个数据库表同步工具

介绍java 程序编写,真正跨平台。传入一定的参数,即可在相同或不同的数据库间进行表的同步,包括表结构的同步及数据的同步。作业由调度工具进行调度,比如 moia,本项目旨在提供一种数据库间表同步的通用工具。目前项目 d…

公认音质好的耳机品牌_什么品牌蓝牙耳机音质比较好?2020五款HIFI音质蓝牙耳机推荐...

对于蓝牙耳机,绝大多数人的需求都是听音乐,同时也作为一个穿戴的修饰品。基于这些需求,在我们选择蓝牙耳机的时候,就会选择一些外观比较好看的时尚音乐蓝牙耳机,既有时尚的外观,又有较好的音质。那么现在有…

mysql创建表时在extra输入数据_MySQL创建数据表(CREATE TABLE语句)

在创建数据库之后,接下来就要在数据库中创建数据表。所谓创建数据表,指的是在已经创建的数据库中建立新表。创建数据表的过程是规定数据列的属性的过程,同时也是实施数据完整性(包括实体完整性、引用完整性和域完整性)约束的过程。接下来我们…

mysql not in报错_mysql从5.7升级到8.0查询报错Expression #2 of SELECT list is not in GROUP BY...

报错信息:Expression #2 of SELECT list is not in GROUP BY clause and containsnonaggregated column ‘sss.month_id’ which is not functionallydependent on columns in GROUP BY clause; this is incompatible withsql_modeonly_full_group_by问题出现的原因…

mysql取消操作系统_Linux下的MySQL简单操作(服务启动与关闭、启动与关闭、查看版本)...

小弟今天记录一下在Linux系统下面的MySQL的简单使用,如下:服务启动与关闭 启动与关闭 查看版本环境Linux版本:centeros 6.6(下面演示),Ubuntu 12.04(参见文章末尾红色标注字体)MySQL版本:5.1.73查看MySQL服务的启动状态…

python文件下载速度 装饰器_python使用装饰器对文件进行读写操作'及遍历文件目录...

‘‘‘使用装饰器对文件进行读写操作‘‘‘#def check_permission(func):#‘‘‘演示嵌套函数定义及使用‘‘‘#def wrapper(*args,**kwargs):#‘‘‘*args:接收任意多个实参并存入元组中;**kwargs:接收关键字参数显示赋值并存入字典中‘‘‘#if kwargs.get(‘usern…

python日期转化成周数_[转]浅析使用python计算两个日期间隔天数﹑周数和指定若干天后对应的日期等...

>>> import datetime>>> help(datetime)http://docs.python.org/library/datetime.html查看2009年5月31日和2009年2月1日间隔多少天>>> d1datetime.date(2009,05,31)>>> d2datetime.date(2009,02,01)>>> d1-d2datetime.timedelta…

python读取csv画图datetime_python – CSV数据(Timestamp和事件)的时间表绘图:x-label常量...

(这个问题可以单独阅读,但是是续集:Timeseries from CSV data (Timestamp and events))我想通过使用python的熊猫模块(见下面的链接)的时间表表示,可视化CSV数据(从2个文件),如下所示.df1的样本数据:TIMESTAMP eventid0 2017-03-20 02:38:24 11 2017-03-…

建立通讯录python增删改查_Python编程实践之编写电话薄实现增删改查功能

初学Python编程实践,写一个小程序练习一下。主要功能就是增删改查的一些功能。主要用到的技术:字典的使用,pickle的使用,io文件操作。希望对大家学习Python编程实践有所帮助。代码如下:import pickle#studentinfo {ne…

python mysql connection close,Python数据库连接关闭

Using the code below leaves me with an open connection, how do I close?import pyodbcconn pyodbc.connect(DRIVERMySQL ODBC 5.1 driver;SERVERlocalhost;DATABASEspt;UIDwho;PWDtestest)csr conn.cursor()csr.close()del csr解决方案Connections have a close method …