[足式机器人]Part3机构运动微分几何学分析与综合Ch03-1 空间约束曲线与约束曲面微分几何学——【读书笔记】

本文仅供学习使用
本文参考:
《机构运动微分几何学分析与综合》-王德伦、汪伟
《微分几何》吴大任

Ch01-4 平面运动微分几何学

  • 3.1 空间曲线微分几何学概述
    • 3.1.1 矢量表示
    • 3.1.2 Frenet标架


连杆机构中的连杆与连架杆构成运动副,该运动副元素的特征点特征线机架坐标系中的运动轨迹曲线或曲面称为约束曲线约束曲面,是联系刚体运动与机构运动综合的桥梁,其几何性质是机构运动综合的理论基础,既是曲线与曲面的几何学研究内容,也是连杆机构运动几何学分析与综合的课题。然而,研究曲线与曲面的几何学,微分几何学方法无疑是自然而然的选择,将其与机构运动学结合,形成以点与线的运动方式研究约束曲线与曲面几何性质,为机构运动几何学分析与综合提供理论依据。
为方便阅读后续内容,在第3.1和第3.2节简单概述微分几何学基本知识;采用微分几何量方法研究连杆机构中典型而又重要的约束曲线与约束曲面,称为空间约束曲线与约束曲面微分几何学

3.1 空间曲线微分几何学概述

3.1.1 矢量表示

在直角坐标中表达一条空间曲线 Γ \Gamma Γ时,有:
{ x = x ( t ) y = y ( t ) z = z ( t ) \left\{ \begin{matrix} x=x(t) \\ y=y(t) \\ z=z(t) \\ \end{matrix} \right. x=x(t)y=y(t)z=z(t)
式中, t t t为曲线的参数,若置换自变量或者消去参数 t t t,则可写成:
{ y = y ( x ) z = z ( x ) \left\{ \begin{matrix} y=y(x) \\ z=z(x) \\ \end{matrix} \right. {y=y(x)z=z(x)
或者写成隐函数形式:
{ F 1 ( x , y , z ) = 0 F 2 ( x , y , z ) = 0 \left\{ \begin{matrix} {{F}_{1}}(x,y,z)=0 \\ {{F}_{2}}(x,y,z)=0 \\ \end{matrix} \right. {F1(x,y,z)=0F2(x,y,z)=0
若将上述 x , y , z x,y,z x,y,z置于空间固定坐标系 { O : i , j , k } \{O:i,j,k\} {O:i,j,k}中,则曲线 Γ \Gamma Γ以参数 t t t表示的矢量方程为:
Γ : R = x ( t ) i + y ( t ) j + z ( t ) k \Gamma :R=x(t)i+y(t)j+z(t)k Γ:R=x(t)i+y(t)j+z(t)k
可以将其简化为:
R = R ( t ) R=R(t) R=R(t)
式(3.4)式(3.5)为空间曲线 Γ \Gamma Γ的矢量表达式, t t t为曲线 Γ \Gamma Γ的一般参数。在 第1章平面曲线的微分几何学 中引入了圆矢量函数用来描述曲线的矢量方程,使得形式简洁并便于计算。因此对于空间曲线 Γ \Gamma Γ的矢量方程式(3.4),可以选择任意两个坐标轴上的分量用圆矢量函数进行描述。例如,将曲线 Γ \Gamma Γ上任意点的矢径在坐标平面 O − i j O-ij Oij上的投影矢量用圆矢量函数描述,如下图所示。
在这里插入图片描述

则其矢量方程可以写出另一种形式:
Γ : R = r ( φ ) e I ( φ ) + z ( φ ) k \Gamma :R=r(\varphi ){{e}_{I(\varphi )}}+z(\varphi )k Γ:R=r(φ)eI(φ)+z(φ)k
对于空间曲线 Γ \Gamma Γ,弧长参数 s s s为其自然参数,且与一般参数 t t t的关系为:
s = ∫ t a t b ∣ d R d t ∣ d t , d s = ∣ d R ∣ = ( d x d t ) 2 + ( d y d t ) 2 + ( d z d t ) 2 d t s=\int_{{{t}_{a}}}^{{{t}_{b}}}{\left| \frac{dR}{dt} \right|dt,ds=\left| dR \right|}=\sqrt{{{(\frac{dx}{dt})}^{2}}+{{(\frac{dy}{dt})}^{2}}+{{(\frac{dz}{dt})}^{2}}}dt s=tatb dtdR dt,ds=dR=(dtdx)2+(dtdy)2+(dtdz)2 dt

空间曲线 Γ \Gamma Γ的矢量方程用弧长参数 s s s表示为: Γ : R = R ( s ) , s a ≤ s ≤ s b \Gamma :R=R(s),{{s}_{a}}\le s\le {{s}_{b}} Γ:R=R(s),sassb

:书中为 Γ : R = R ( s ) , s a ≤ a ≤ s b \Gamma :R=R(s),{{s}_{a}}\le a\le {{s}_{b}} Γ:R=R(s),saasb

【例3-1】 球面曲线如下图所示:
在这里插入图片描述
对于球面曲线 Γ \Gamma Γ,习惯于将直角坐标系 { O : i , j , k } \{O:i,j,k\} {O:i,j,k}原点置于球心,则用直角坐标表示为:
{ x = x ( t ) , y = y ( t ) , z = z ( t ) x 2 + y 2 + z 2 = R 2 \left\{ \begin{matrix} x=x(t),y=y(t),z=z(t) \\ {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{R}^{2}} \\ \end{matrix} \right. {x=x(t),y=y(t),z=z(t)x2+y2+z2=R2
式中, R R R为球面半径, t t t为球面曲线的参数,若置换自变量或者消去参数 t t t,可写成:
{ z = z ( x , y ) x 2 + y 2 + z 2 = R 2 \left\{ \begin{matrix} z=z(x,y) \\ {{x}^{2}}+{{y}^{2}}+{{z}^{2}}={{R}^{2}} \\ \end{matrix} \right. {z=z(x,y)x2+y2+z2=R2
由于球面曲线上的点始终分布在一球面上,因此往往用球面坐标表示曲线为:
δ = δ ( t ) , φ = φ ( t ) , r = R \delta =\delta (t),\varphi =\varphi (t),r=R δ=δ(t),φ=φ(t),r=R
式中, δ \delta δ是由原点0到曲线上点 P P P的有向线段 O P OP OP k k k的夹角; φ \varphi φ O P OP OP O − i j O-ij Oij面上的投影与i的夹角, δ \delta δ φ \varphi φ的取值范围分别为 [ 0 , π ] [0,\pi ] [0,π] [ 0 , 2 π ] [0,2\pi ] [0,2π]。点 P P P在坐标系 { O : i , j , k } \{O:i,j,k\} {O:i,j,k}中的球面坐标与直角坐标之间具有如下转换关系
x = R sin ⁡ δ cos ⁡ φ , y = R sin ⁡ δ sin ⁡ φ , z = R cos ⁡ δ x=R\sin \delta \cos \varphi ,y=R\sin \delta \sin \varphi ,z=R\cos \delta x=Rsinδcosφ,y=Rsinδsinφ,z=Rcosδ
将上述 x , y , z x,y,z x,y,z置于坐标系 { O : i , j , k } \{O:i,j,k\} {O:i,j,k}中,则球面曲线以参数 t t t表示的矢量方程为:
Γ : R = R ( t ) = x ( t ) i + y ( t ) j + z ( t ) k \Gamma :R=R(t)=x(t)i+y(t)j+z(t)k Γ:R=R(t)=x(t)i+y(t)j+z(t)k
若通过圆矢量函数表示球面曲线的矢量方程,则为:
R = R sin ⁡ δ ( φ ) e I ( φ ) + R cos ⁡ δ ( φ ) k R=R\sin \delta (\varphi ){{e}_{I(\varphi )}}+R\cos \delta (\varphi )k R=Rsinδ(φ)eI(φ)+Rcosδ(φ)k
比较式(E3-1.1)、式(E3-1.4)与式(E3-1.6)可知,采用矢量表示的球面曲线比其他方式表达要简单的多。

【例3-2】 圆柱面曲线如下图所示:
在这里插入图片描述
圆柱面曲线在直角坐标系 { O : i , j , k } \{O:i,j,k\} {O:i,j,k}中的方程为:
{ x = r 0 cos ⁡ φ y = r 0 sin ⁡ φ z = z ( φ ) \left\{ \begin{matrix} x={{r}_{0}}\cos \varphi \\ y={{r}_{0}}\sin \varphi \\ z=z(\varphi ) \\ \end{matrix} \right. x=r0cosφy=r0sinφz=z(φ)
式中, r 0 {{r}_{0}} r0为圆柱面半径。若通过圆矢量函数表示圆柱面曲线的矢量方程,则为:
R = r 0 e I ( φ ) + z ( φ ) k R={{r}_{0}}{{e}_{I(\varphi )}}+z(\varphi )k R=r0eI(φ)+z(φ)k

3.1.2 Frenet标架

空间曲线 Γ ⃗ : R ⃗ = R ⃗ ( s ) \vec{\varGamma}:\vec{R}=\vec{R}\left( s \right) Γ :R =R (s) 在任意点 P P P处有两个无限接近位置的点连线组成切线,其单位切矢 α ⃗ ( s ) = d R ⃗ ( s ) d s \vec{\alpha}\left( s \right) =\frac{\mathrm{d}\vec{R}\left( s \right)}{\mathrm{d}s} α (s)=dsdR (s)始终指向曲线弧长增加的方向,将切矢 α ⃗ ( s ) \vec{\alpha}\left( s \right) α (s) 对弧长参数求导,可得:

d α ⃗ ( s ) d s = k ( s ) β ⃗ ( s ) \frac{\mathrm{d}\vec{\alpha}\left( s \right)}{\mathrm{d}s}=k\left( s \right) \vec{\beta}\left( s \right) dsdα (s)=k(s)β (s)

其中, k ( s ) k\left( s \right) k(s) 称为曲线 Γ ⃗ \vec{\varGamma} Γ 在点 P P P 处的曲率,即三个无限接近位置点构成空间曲线在该点处的密切平面曲率是空间曲线在密切平面内的弯曲程度,体现了曲线的切矢的倾斜角对弧长参数的变化率。与平面曲线曲率不同,空间曲线的曲率非负 β ⃗ ( s ) \vec{\beta}\left( s \right) β (s) 称为曲线 Γ ⃗ \vec{\varGamma} Γ 在点 P P P 处的主法矢,指向了曲线在该点的曲率中心。当 k ( s ) ≠ 0 k\left( s \right) \ne 0 k(s)=0 时,其倒数 ρ ( s ) = 1 / k ( s ) \rho \left( s \right) =1/k\left( s \right) ρ(s)=1/k(s) 称为曲线 Γ ⃗ \vec{\varGamma} Γ 曲率半径,则曲线 Γ ⃗ \vec{\varGamma} Γ 曲率中心 C C C的矢量为:

R ⃗ C = R ⃗ P + ρ ⋅ β ⃗ \vec{R}_{\mathrm{C}}=\vec{R}_{\mathrm{P}}+\rho \cdot \vec{\beta} R C=R P+ρβ

由空间曲线 Γ ⃗ \vec{\varGamma} Γ 在点 P P P 处的切矢 α ⃗ ( s ) \vec{\alpha}\left( s \right) α (s)主法矢 β ⃗ ( s ) \vec{\beta}\left( s \right) β (s) 可以构建矢量 γ ⃗ ( s ) = α ⃗ ( s ) × β ⃗ ( s ) \vec{\gamma}\left( s \right) =\vec{\alpha}\left( s \right) \times \vec{\beta}\left( s \right) γ (s)=α (s)×β (s) ,称之为曲线的副法矢,从而在空间曲线 Γ ⃗ \vec{\varGamma} Γ 上构造了单位右手系正交标架 { R ⃗ ( s ) ; α ⃗ ( s ) , β ⃗ ( s ) , γ ⃗ ( s ) } \left\{ \vec{R}\left( s \right) ;\vec{\alpha}\left( s \right) ,\vec{\beta}\left( s \right) ,\vec{\gamma}\left( s \right) \right\} {R (s);α (s),β (s),γ (s)} ,称为曲线 Γ ⃗ \vec{\varGamma} Γ 在点 P P PFrenet标架

在这里插入图片描述
对于空间曲线 Γ ⃗ \vec{\varGamma} Γ P P P 点的Frenet标架 { R ⃗ ( s ) ; α ⃗ ( s ) , β ⃗ ( s ) , γ ⃗ ( s ) } \left\{ \vec{R}\left( s \right) ;\vec{\alpha}\left( s \right) ,\vec{\beta}\left( s \right) ,\vec{\gamma}\left( s \right) \right\} {R (s);α (s),β (s),γ (s)} ,其中标矢 α ⃗ ( s ) \vec{\alpha}\left( s \right) α (s) β ⃗ ( s ) \vec{\beta}\left( s \right) β (s) 确定了密切平面 β ⃗ ( s ) \vec{\beta}\left( s \right) β (s) γ ⃗ ( s ) \vec{\gamma}\left( s \right) γ (s) 确定的平面称为法平面,而 α ⃗ ( s ) \vec{\alpha}\left( s \right) α (s) γ ⃗ ( s ) \vec{\gamma}\left( s \right) γ (s) 确定的平面称为从切平面。可见Frenet标架由三个同空间曲线紧密联系的向量所组成,其微分运算公式为:

{ d R ⃗ ( s ) d s = α ⃗ ( s ) d α ⃗ ( s ) d s = k ( s ) β ⃗ ( s ) d β ⃗ ( s ) d s = − k ( s ) α ⃗ ( s ) + τ ( s ) γ ⃗ ( s ) d γ ⃗ ( s ) d s = − τ ( s ) β ⃗ ( s ) \begin{cases} \begin{array}{c} \frac{\mathrm{d}\vec{R}\left( s \right)}{\mathrm{d}s}=\vec{\alpha}\left( s \right)\\ \frac{\mathrm{d}\vec{\alpha}\left( s \right)}{\mathrm{d}s}=k\left( s \right) \vec{\beta}\left( s \right)\\ \end{array}\\ \begin{array}{c} \frac{\mathrm{d}\vec{\beta}\left( s \right)}{\mathrm{d}s}=-k\left( s \right) \vec{\alpha}\left( s \right) +\tau \left( s \right) \vec{\gamma}\left( s \right)\\ \frac{\mathrm{d}\vec{\gamma}\left( s \right)}{\mathrm{d}s}=-\tau \left( s \right) \vec{\beta}\left( s \right)\\ \end{array}\\ \end{cases} dsdR (s)=α (s)dsdα (s)=k(s)β (s)dsdβ (s)=k(s)α (s)+τ(s)γ (s)dsdγ (s)=τ(s)β (s)

其中, τ ( s ) \tau \left( s \right) τ(s) 称为空间曲线 Γ ⃗ \vec{\varGamma} Γ 在点 P P P 处的挠率,它衡量了曲线在点 $P$ 的(密切平面)副法矢 $\vec{\gamma}\left( s \right)$ 倾斜角对弧长的变化率,从而描述了曲线在该点偏离密切平面的程度。上式也称为空间曲线的Frenet公式

由Frenet公式可以得到空间曲线 Γ ⃗ \vec{\varGamma} Γ 曲率 k k k 和挠率 τ \tau τ 的表达式为:

k = ∣ d 2 R ⃗ ( s ) d s 2 ∣ , τ = ( d R ⃗ ( s ) d s , d 2 R ⃗ ( s ) d s 2 , d 3 R ⃗ ( s ) d s 3 ) / ∣ d 2 R ⃗ ( s ) d s 2 ∣ 2 k=\left| \frac{\mathrm{d}^2\vec{R}\left( s \right)}{\mathrm{d}s^2} \right|,\tau =\left( \frac{\mathrm{d}\vec{R}\left( s \right)}{\mathrm{d}s},\frac{\mathrm{d}^2\vec{R}\left( s \right)}{\mathrm{d}s^2},\frac{\mathrm{d}^3\vec{R}\left( s \right)}{\mathrm{d}s^3} \right) /\left| \frac{\mathrm{d}^2\vec{R}\left( s \right)}{\mathrm{d}s^2} \right|^2 k= ds2d2R (s) ,τ=(dsdR (s),ds2d2R (s),ds3d3R (s))/ ds2d2R (s) 2

若空间曲线 Γ ⃗ \vec{\varGamma} Γ 是以一般参数 t t t 进行描述的,则其曲率 k ( s ) k(s) k(s) 和挠率 τ ( s ) \tau \left( s \right) τ(s) 的表达式为:
k = ∣ d R ⃗ d t × d 2 R ⃗ d t 2 ∣ / ∣ d R ⃗ d t ∣ 3 , τ = ( d R ⃗ d t , d 2 R ⃗ d t 2 , d 3 R ⃗ d t 3 ) / ( d R ⃗ d t × d 2 R ⃗ d t 2 ) 2 k=\left| \frac{\mathrm{d}\vec{R}}{\mathrm{d}t}\times \frac{\mathrm{d}^2\vec{R}}{\mathrm{d}t^2} \right|/\left| \frac{\mathrm{d}\vec{R}}{\mathrm{d}t} \right|^3,\tau =\left( \frac{\mathrm{d}\vec{R}}{\mathrm{d}t},\frac{\mathrm{d}^2\vec{R}}{\mathrm{d}t^2},\frac{\mathrm{d}^3\vec{R}}{\mathrm{d}t^3} \right) /\left( \frac{\mathrm{d}\vec{R}}{\mathrm{d}t}\times \frac{\mathrm{d}^2\vec{R}}{\mathrm{d}t^2} \right) ^2 k= dtdR ×dt2d2R / dtdR 3,τ=(dtdR ,dt2d2R ,dt3d3R )/(dtdR ×dt2d2R )2
对于空间曲线来说,曲率 k ( s ) k(s) k(s) 和挠率 τ ( s ) \tau \left( s \right) τ(s) 不依赖于坐标系的选定。是空间曲线的不变量,能够唯一地确定空间曲线,可以将 k = k ( s ) , τ = τ ( s ) k=k\left( s \right) ,\tau =\tau \left( s \right) k=k(s),τ=τ(s) 称为空间曲线的自然方程。于是有:

定理3.1:在区间 0 ⩽ s ⩽ l 0\leqslant s\leqslant l 0sl上任意给定连续可微函数 $k\left( s \right) >0 $ 和连续函数 τ ( s ) \tau \left( s \right) τ(s) 以及初始右手系正交标架 { R ⃗ 0 ; α ⃗ 0 , β ⃗ 0 , γ ⃗ 0 } \left\{ \vec{R}_0;\vec{\alpha}_0,\vec{\beta}_0,\vec{\gamma}_0 \right\} {R 0;α 0,β 0,γ 0} ,则一定有且仅有一条以 s s s 为弧长、以 k ( s ) k\left( s \right) k(s) 为曲率、 τ ( s ) \tau \left( s \right) τ(s) 为挠率的空间有向曲线。

建立了空间曲线 Γ ⃗ \vec{\varGamma} Γ P P P 点处的Frenet标架 { R ⃗ ( s ) ; α ⃗ ( s ) , β ⃗ ( s ) , γ ⃗ ( s ) } \left\{ \vec{R}\left( s \right) ;\vec{\alpha}\left( s \right) ,\vec{\beta}\left( s \right) ,\vec{\gamma}\left( s \right) \right\} {R (s);α (s),β (s),γ (s)} ,可将曲线 Γ ⃗ \vec{\varGamma} Γ 在点 P P P的邻域内按照泰勒公式展开。假定曲线 Γ ⃗ \vec{\varGamma} Γ 在点 P P P 处的弧长为 s s s,则有:

R ⃗ ( s + Δ s ) = R ⃗ ( s ) + d R ⃗ ( s ) d s Δ s + 1 2 ! d 2 R ⃗ ( s ) d s 2 ( Δ s ) 2 + ⋯ + 1 n ! d n R ⃗ ( s ) d s n ( Δ s ) n + ε n ( s , Δ s ) ( Δ s ) n \vec{R}\left( s+\varDelta s \right) =\vec{R}\left( s \right) +\frac{\mathrm{d}\vec{R}\left( s \right)}{\mathrm{d}s}\varDelta s+\frac{1}{2!}\frac{\mathrm{d}^2\vec{R}\left( s \right)}{\mathrm{d}s^2}\left( \varDelta s \right) ^2+\cdots +\frac{1}{n!}\frac{\mathrm{d}^n\vec{R}\left( s \right)}{\mathrm{d}s^n}\left( \varDelta s \right) ^n+\varepsilon _{\mathrm{n}}\left( s,\varDelta s \right) \left( \varDelta s \right) ^n R (s+Δs)=R (s)+dsdR (s)Δs+2!1ds2d2R (s)(Δs)2++n!1dsndnR (s)(Δs)n+εn(s,Δs)(Δs)n

式中, lim ⁡ Δ s → 0 ε n ( s , Δ s ) = 0 , d R ⃗ d s = α ⃗ , d 2 R ⃗ d s 2 = k β ⃗ , d 3 R ⃗ d s 3 = − k 2 α ⃗ + d k d s β ⃗ + k τ γ ⃗ \lim_{\varDelta s\rightarrow 0} \varepsilon _{\mathrm{n}}\left( s,\varDelta s \right) =0,\frac{\mathrm{d}\vec{R}}{\mathrm{d}s}=\vec{\alpha},\frac{\mathrm{d}^2\vec{R}}{\mathrm{d}s^2}=k\vec{\beta},\frac{\mathrm{d}^3\vec{R}}{\mathrm{d}s^3}=-k^2\vec{\alpha}+\frac{\mathrm{d}k}{\mathrm{d}s}\vec{\beta}+k\tau \vec{\gamma} limΔs0εn(s,Δs)=0,dsdR =α ,ds2d2R =kβ ,ds3d3R =k2α +dsdkβ +kτγ ,并以此可以得到矢径 R ⃗ ( s ) \vec{R}\left( s \right) R (s) 关于弧长参数的各阶导数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/56288.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux基础(二)

这里写目录标题 一、网络管理1- 网络状态查看1.1 net-tools1.2 iproute2 2- 网络故障排除 !step1:检测当前主机和目标主机是否畅通 [ping]step2:检测网络质量,追踪路由 [traceroute]step3:检测网络质量,检查是否有数据包丢失 [mrt]step4: 检查端口是否畅通 [telnet]…

HTML和CSS

HTML HTML(Hyper Text Markup Language):超文本语言 超文本:超越了文本的限制,比普通文本更强大。除了文字信息,还可以定义图片、音频、视频等内容。 标记语言:由标签构成的语言 HTML标签都是预定义好的。例如:使用&l…

Linux下查找和删除7天以前的文件

在工作做,项目里runtime目录下产生很多日志文件,需要定期去删除 记一次linux下清理过期日志的过程; 环境说明:删除/var/log/下7天以前的.log文件; 用到的命令:find、rm; 命令示例 find /data/w…

JS的二进制家族:Blob、ArrayBuffer和Buffer

1.Blob实现下载文件 我们可以通过window.URL.createObjectURL&#xff0c;接收一个Blob&#xff08;File&#xff09;对象&#xff0c;将其转化为Blob URL,然后赋给 a.download属性&#xff0c;然后在页面上点击这个链接就可以实现下载了 <!-- html部分 --> <a id&qu…

一文搞懂深度信念网络!DBN概念介绍与Pytorch实战

目录 一、概述1.1 深度信念网络的概述1.2 深度信念网络与其他深度学习模型的比较结构层次学习方式训练和优化应用领域 1.3 应用领域图像识别与处理自然语言处理推荐系统语音识别无监督学习与异常检测药物发现与生物信息学 二、结构2.1 受限玻尔兹曼机&#xff08;RBM&#xff0…

正确进行自动化测试

前言&#xff1a; &#x1f4d5;作者简介&#xff1a;热爱编程的小七&#xff0c;致力于C、Java、Python等多编程语言&#xff0c;热爱编程和长板的运动少年&#xff01; &#x1f4d8;相关专栏Java基础语法&#xff0c;JavaEE初阶&#xff0c;数据库&#xff0c;数据结构和算法…

10-案例: 注册登录

项目思路: 1. 首页展示 将数据传递给前端模板渲染 2. 注册用户 接收前端传递的数据,保存后,重定向到首页 3. 删除用户 接收前端传递的用户名,进行删除 4. 修改用户 接收前端传递的数据,老名字进行判断,新数据修改数据 项目结构: 构建蓝图: (1). apps / user / model.py 增…

STM32中BOOT的作用 (芯片死锁解决方法)

BOOT stm32中具有BOOT1和BOOT0 作用 BOOT是stm32单片机的启动模式&#xff0c; 通过不同组合模式&#xff0c;共有三种启动方式。 一般来说就是指我们下好程序后&#xff0c;重启芯片时&#xff0c;SYSCLK的第4个上升沿&#xff0c;BOOT引脚的值将被锁存。用户可以通过设置B…

边写代码边学习之Bidirectional LSTM

1. 什么是Bidirectional LSTM 双向 LSTM (BiLSTM) 是一种主要用于自然语言处理的循环神经网络。 与标准 LSTM 不同&#xff0c;输入是双向流动的&#xff0c;并且它能够利用双方的信息。 它也是一个强大的工具&#xff0c;可以在序列的两个方向上对单词和短语之间的顺序依赖…

react通过ref获取函数子组件实例方法

在react16之后带来了hooks之后&#xff0c;确实方便了很多组件开发&#xff0c;也加快了函数式编程的速度&#xff0c;但是当你通过useRef获取子组件的时候&#xff0c;又恰好子组件是一个函数组件&#xff0c;那么将会报一个错误&#xff1a;报这个错误的主要原因是函数组件没…

Java:移位运算符左移运算符<<、右移运算符>>、无符号右移运算符>>>

目录 符号位左移运算符<<右移运算符>>无符号右移运算符>>>其他 符号位 二进制形式最左边的第一位是符号位 0表示正数1表示负数 例如 十进制&#xff1a;1 二进制原码&#xff1a;00000000 00000000 00000000 00000001十进制&#xff1a;-1 二进制原码…

数据通信——传输层(UDP)

引言 我们上网观看比赛的时候&#xff0c;一旦网络信号出现问题&#xff0c;那可就太难受了&#xff0c;这意味着卡顿的时间内&#xff0c;你会错过这段时间内的内容。这种特性要归功于UDP&#xff08;User Datagram Protocol&#xff09;用户数据报协议。 无连接性 一般的&am…

第十七课:利用 Setup Factory 制作 Qt 软件安装包

功能描述&#xff1a;详细介绍如何利用 Setup Factory 制作 Qt 软件安装包&#xff0c;从 Setup Factory 软件下载、安装&#xff0c;到如何利用 Setup Factory 制作软件安装包&#xff0c;手把手教你将 Qt 应用程序制作成具有安装向导的安装包。 一、Setup Factory 简介 Setu…

qt信号槽同步问题

目录 信号槽&#xff1a; 注意事项&#xff1a; 具体例子&#xff1a; 线程安全问题的例子&#xff1a; 信号槽&#xff1a; 在Qt编程中&#xff0c;信号&#xff08;Signal&#xff09;和槽&#xff08;Slot&#xff09;是一种用于在对象之间进行通信的机制。信号用于发出…

宇凡微Y51T合封射频芯片,集成433M芯片和MCU

宇凡微推出的Y51T芯片的设计理念很有趣&#xff0c;将MCU和射频芯片集成在一颗芯片内&#xff0c;从而实现高度的集成度和功能优势。这样的设计在某些应用中确实能够带来诸多优点&#xff1a; Y51T将51H MCU和Y4455 433MHz射频芯片融合在一颗芯片内&#xff0c;实现了高度集成的…

Python基础 - 构造函数

目录 基础构造函数 重写 钻石继承 super函数 基础构造函数 命名为_init_&#xff0c;在实例化对象之前会自动执行该函数 构造函数方便我们在实例化对象的时候实现个性化定制 class A():def __init__(self,x,y):self.x xself.y ydef add(self):return self.xself.yclass…

(纯c)数据结构之------>链表(详解)

目录 一. 链表的定义 1.链表的结构. 2.为啥要存在链表及链表的优势. 二. 无头单向链表的常用接口 1.头插\尾插 2.头删\尾删 3.销毁链表/打印链表 4.在pos位置后插入一个值 5.消除pos位置后的值 6.查找链表中的值并且返回它的地址 7.创建一个动态开辟的结点 三.顺序表与链表…

【深度学习】Pytorch训练过程中损失值出现NaN

项目场景 利用Pytorch框架&#xff0c;结合FEDformer开源代码&#xff08;https://github.com/MAZiqing/FEDformer&#xff09;&#xff0c;将自己的数据集作为输入训练模型。 问题描述 训练过程中&#xff0c;发现打印出来的Train loss, Test loss, Test loss中&#xff0c…

性能调优篇 二、Jvm监控及诊断工具-命令行篇

目录 一、概述1、简单命令行工具 二、jps&#xff1a;查看正在运行的Java程序&#xff08;掌握&#xff09;1、是什么&#xff1f;2、测试3、基本语法 三、jstat&#xff1a;查看jvm统计信息&#xff08;掌握&#xff09;1、是什么&#xff1f;2、基本语法3、补充 四、jinfo&am…

MongoDB 双机热备那篇文章是 “毒”

开头还是介绍一下群&#xff0c;如果感兴趣polardb ,mongodb ,mysql ,postgresql ,redis &#xff0c;Oracle ,Oceanbase 等有问题&#xff0c;有需求都可以加群群内有各大数据库行业大咖&#xff0c;CTO&#xff0c;可以解决你的问题。加群请加微信号 liuaustin3 &#xff08;…