【深度学习】实验03 特征处理

文章目录

  • 特征处理
    • 标准化
    • 归一化
    • 正则化

特征处理

标准化

# 导入标准化库
from sklearn.preprocessing import StandardScalerfrom matplotlib import gridspec
import numpy as np
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
# 随机生成0到100的整数,100行2列
data = np.random.randint(0, 100, (100, 2))
data

array([[ 7, 84],
[43, 81],
[22, 84],
[ 7, 61],
[51, 74],
[95, 94],
[80, 92],
[58, 35],
[88, 15],
[61, 42],
[75, 95],
[87, 64],
[18, 77],
[13, 60],
[18, 51],
[61, 12],
[32, 11],
[ 6, 77],
[85, 44],
[87, 10],
[84, 10],
[ 1, 28],
[76, 87],
[61, 0],
[ 9, 25],
[83, 75],
[ 7, 60],
[80, 73],
[62, 58],
[71, 84],
[78, 6],
[92, 54],
[92, 50],
[28, 57],
[73, 80],
[97, 86],
[84, 78],
[ 9, 29],
[90, 64],
[ 8, 32],
[98, 62],
[45, 93],
[73, 72],
[97, 11],
[21, 66],
[32, 9],
[65, 59],
[30, 36],
[19, 37],
[75, 43],
[90, 55],
[53, 8],
[73, 25],
[73, 82],
[84, 76],
[49, 97],
[29, 64],
[69, 37],
[72, 90],
[10, 87],
[19, 70],
[49, 53],
[56, 24],
[61, 16],
[58, 23],
[28, 31],
[37, 49],
[67, 25],
[31, 99],
[38, 84],
[55, 53],
[27, 89],
[83, 50],
[73, 86],
[67, 11],
[61, 72],
[17, 88],
[82, 67],
[56, 51],
[18, 59],
[73, 44],
[ 8, 86],
[ 6, 20],
[32, 12],
[15, 4],
[91, 17],
[21, 78],
[67, 63],
[12, 32],
[45, 76],
[41, 29],
[75, 64],
[75, 19],
[ 1, 76],
[17, 18],
[13, 47],
[80, 48],
[88, 76],
[29, 63],
[21, 95]])

# 标准化
ss = StandardScaler()
std_data = ss.fit_transform(data)
std_data

array([[-1.50234381, 1.09430096],
[-0.28120186, 0.98577525],
[-0.99353466, 1.09430096],
[-1.50234381, 0.26227048],
[-0.00983698, 0.73254858],
[ 1.48266985, 1.45605335],
[ 0.97386071, 1.38370287],
[ 0.22760729, -0.67828572],
[ 1.24522559, -1.40179049],
[ 0.32936912, -0.42505905],
[ 0.80425766, 1.49222858],
[ 1.21130498, 0.37079619],
[-1.1292171 , 0.84107429],
[-1.29882015, 0.22609524],
[-1.1292171 , -0.09948191],
[ 0.32936912, -1.5103162 ],
[-0.65432856, -1.54649144],
[-1.53626442, 0.84107429],
[ 1.14346376, -0.35270857],
[ 1.21130498, -1.58266668],
[ 1.10954315, -1.58266668],
[-1.70586747, -0.93151239],
[ 0.83817827, 1.20282668],
[ 0.32936912, -1.94441906],
[-1.43450259, -1.0400381 ],
[ 1.07562254, 0.76872382],
[-1.50234381, 0.22609524],
[ 0.97386071, 0.69637334],
[ 0.36328973, 0.15374476],
[ 0.66857522, 1.09430096],
[ 0.90601949, -1.72736763],
[ 1.38090802, 0.00904381],
[ 1.38090802, -0.13565714],
[-0.790011 , 0.11756952],
[ 0.73641644, 0.94960001],
[ 1.55051107, 1.16665144],
[ 1.10954315, 0.87724953],
[-1.43450259, -0.89533715],
[ 1.3130668 , 0.37079619],
[-1.4684232 , -0.78681143],
[ 1.58443168, 0.29844572],
[-0.21336064, 1.41987811],
[ 0.73641644, 0.6601981 ],
[ 1.55051107, -1.54649144],
[-1.02745527, 0.44314667],
[-0.65432856, -1.61884192],
[ 0.46505156, 0.18992 ],
[-0.72216978, -0.64211048],
[-1.09529649, -0.60593524],
[ 0.80425766, -0.38888381],
[ 1.3130668 , 0.04521905],
[ 0.05800424, -1.65501716],
[ 0.73641644, -1.0400381 ],
[ 0.73641644, 1.02195048],
[ 1.10954315, 0.80489905],
[-0.0776782 , 1.56457906],
[-0.75609039, 0.37079619],
[ 0.600734 , -0.60593524],
[ 0.70249583, 1.31135239],
[-1.40058198, 1.20282668],
[-1.09529649, 0.58784762],
[-0.0776782 , -0.02713143],
[ 0.15976607, -1.07621334],
[ 0.32936912, -1.36561525],
[ 0.22760729, -1.11238858],
[-0.790011 , -0.82298667],
[-0.48472551, -0.17183238],
[ 0.53289278, -1.0400381 ],
[-0.68824917, 1.63692954],
[-0.4508049 , 1.09430096],
[ 0.12584546, -0.02713143],
[-0.82393161, 1.27517715],
[ 1.07562254, -0.13565714],
[ 0.73641644, 1.16665144],
[ 0.53289278, -1.54649144],
[ 0.32936912, 0.6601981 ],
[-1.16313771, 1.23900191],
[ 1.04170193, 0.47932191],
[ 0.15976607, -0.09948191],
[-1.1292171 , 0.18992 ],
[ 0.73641644, -0.35270857],
[-1.4684232 , 1.16665144],
[-1.53626442, -1.2209143 ],
[-0.65432856, -1.5103162 ],
[-1.23097893, -1.79971811],
[ 1.34698741, -1.32944001],
[-1.02745527, 0.87724953],
[ 0.53289278, 0.33462096],
[-1.33274076, -0.78681143],
[-0.21336064, 0.80489905],
[-0.34904307, -0.89533715],
[ 0.80425766, 0.37079619],
[ 0.80425766, -1.25708953],
[-1.70586747, 0.80489905],
[-1.16313771, -1.29326477],
[-1.29882015, -0.24418286],
[ 0.97386071, -0.20800762],
[ 1.24522559, 0.80489905],
[-0.75609039, 0.33462096],
[-1.02745527, 1.49222858]])

# 作图
gs = gridspec.GridSpec(5,5)
fig = plt.figure()
ax1 = fig.add_subplot(gs[0:2, 1:4])
ax2 = fig.add_subplot(gs[3:5, 1:4])ax1.scatter(data[:, 0], data[:, 1])
ax2.scatter(std_data[:, 0], std_data[:, 1])plt.show()

1

归一化

# 导入归一化库
from sklearn.preprocessing import MinMaxScaler
import numpy as npdata = np.random.uniform(0, 100, 10)[:, np.newaxis]
mm = MinMaxScaler()
mm_data = mm.fit_transform(data)
origin_data = mm.inverse_transform(mm_data)
print('data is ',data)
print('after Min Max ',mm_data)
print('origin data is ',origin_data)

data is [[67.74476271]
[10.2077285 ]
[27.34037799]
[24.72236105]
[68.67245127]
[91.11026437]
[51.92345696]
[92.05191865]
[16.9495692 ]
[94.18851495]]
after Min Max [[0.6851214 ]
[0. ]
[0.20400678]
[0.17283278]
[0.69616784]
[0.96334578]
[0.49672943]
[0.97455851]
[0.08027837]
[1. ]]
origin data is [[67.74476271]
[10.2077285 ]
[27.34037799]
[24.72236105]
[68.67245127]
[91.11026437]
[51.92345696]
[92.05191865]
[16.9495692 ]
[94.18851495]]

正则化

# 导入L1正则化库
from sklearn.preprocessing import Normalizer# 导入L2正则化库
from sklearn.preprocessing import normalizeX = [[1, -1, 2],[2, 0, 0],[0, 1, -1]]normalizerl1 = Normalizer(norm='l1')
l1 = normalizerl1.fit_transform(X)
print('l1:', l1)l2 = normalize(X, norm='l2')
print('l2:', l2)
l1: [[ 0.25 -0.25  0.5 ][ 1.    0.    0.  ][ 0.    0.5  -0.5 ]]
l2: [[ 0.40824829 -0.40824829  0.81649658][ 1.          0.          0.        ][ 0.          0.70710678 -0.70710678]]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/56111.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

aws PinPoint发附件demo

php 版aws PinPoint发附件demo Laravel8框架,安装了"aws/aws-sdk-php": "^3.257" 主要代码: public function sendRawMail(Request $request) {$file $request->file(attachment);/*echo count($file);dd($file);*/$filenam…

Mobx在非react组件中修改数据,在ts/js中修改数据实现响应式更新

我们都之前在封装mobx作为数据存储的时候,使用到了useContext作为包裹,将store变成了一个hooks使用,封装代码: import React from react import UserInfo from ./user import Setting from ./seting import NoteStore from ./noteclass Stor…

定时产生不同频率方波

/*----------------------------------------------- 内容&#xff1a;通过定时产生不同频率方波 ------------------------------------------------*/ #include<reg52.h> //包含头文件&#xff0c;一般情况不需要改动&#xff0c;头文件包含特殊功能寄存器的定义 /*-…

基于Jenkins构建生产CICD环境(第三篇)

目录 基于Jenkins自动打包并部署docker环境 1、安装docker-ce 2、阿里云镜像加速器 3、构建tomcat 基础镜像 4、构建一个Maven项目 基于Jenkins自动化部署PHP环境 基于rsync部署 基于Jenkins自动打包并部署docker环境 1、安装docker-ce 在192.168.2.123 机器上&#x…

【linux命令讲解大全】007.现代技术中的差异比较工具——diff

文章目录 diff补充说明语法选项参数实例以正常模式比较差异 从零学 python diff 比较给定的两个文件的不同 补充说明 diff命令在最简单的情况下&#xff0c;用于比较给定的两个文件的不同。如果使用 “-” 代替 “文件” 参数&#xff0c;则要比较的内容将来自标准输入。dif…

Qt——Qt 开发中所涉及的所有控件(基本控件、容器控件、布局控件、高级控件、其他控件、多媒体控件、定制控件)

Qt 开发中所涉及的所有控件 一、基本控件 二、容器控件 三、布局控件 四、高级控件 五、其他控件 六、多媒体控件 七、定制控件 Qt开发中提供了许多控件&#xff08;Widgets&#xff09;供开发者使用&#xff0c;用于构建图形用户界面&#xff08;GUI&#xff09;应用程序。以…

Go 第三方库引起的线上问题、如何在线线上环境进行调试定位问题以及golang开发中各种问题精华整理总结

Go 第三方库引起的线上问题、如何在线线上环境进行调试定位问题以及golang开发中各种问题精华整理总结。 01 前言 在使用 Go 语言进行 Web 开发时&#xff0c;我们往往会选择一些优秀的库来简化 HTTP 请求的处理。其中&#xff0c;go-resty 是一个被广泛使用的 HTTP 客户端。…

React Diff算法原理

文章目录 前言Diff算法原理 前言 &#x1f449;点此&#xff08;想要了解Diff算法&#xff09; Diff算法原理 React Diff算法是React用于更新虚拟DOM树的一种算法。它通过比较新旧虚拟DOM树的差异&#xff0c;然后只对有差异的部分进行更新&#xff0c;从而提高性能。 Reac…

如何有效进行RLHF的数据标注?

编者按&#xff1a;随着大语言模型在自然语言处理领域的广泛应用&#xff0c;如何从人类反馈进行强化学习&#xff08;RLHF&#xff09;已成为一个重要的技术挑战。并且RLHF需要大量高质量的人工数据标注&#xff0c;这是一个非常费力的过程。 本文作者在数据标注领域具有丰富经…

JWT工具类,SpringBoot整合Jwt使用

引入依赖 <!-- JWT依赖 --><dependency><groupId>io.jsonwebtoken</groupId><artifactId>jjwt</artifactId><version>0.9.1</version></dependency><!-- JWT相关依赖&#xff0c;jdk1.8以上版本还需引入以下依赖 --&…

解决jupyter notebook可以使用pytorch而Pycharm不能使用pytorch的问题

之前我是用的这个目录下的Python 开始更新目录 1、 2、 3、

使用Python内置模块加速SQL查询

大家好&#xff0c;假设你正在查阅一本书的页面&#xff0c;你想要更快地找到你正在寻找的信息。那么你可能会查找术语索引&#xff0c;然后跳转到引用特定术语的页面&#xff0c;SQL中的索引与书籍中的索引工作原理类似。 在大多数实际系统中&#xff0c;都将对包含大量行的数…

【javaweb】学习日记Day6 - Mysql 数据库 DDL DML

之前学习过的SQL语句笔记总结戳这里→【数据库原理与应用 - 第六章】T-SQL 在SQL Server的使用_Roye_ack的博客-CSDN博客 目录 一、概述 1、如何安装及配置路径Mysql&#xff1f; 2、SQL分类 二、DDL 数据定义 1、数据库操作 2、IDEA内置数据库使用 &#xff08;1&…

Python3 列表

Python3 列表 序列是 Python 中最基本的数据结构。 序列中的每个值都有对应的位置值&#xff0c;称之为索引&#xff0c;第一个索引是 0&#xff0c;第二个索引是 1&#xff0c;依此类推。 Python 有 6 个序列的内置类型&#xff0c;但最常见的是列表和元组。 列表都可以进…

飞腾uboot命令简单介绍

飞腾uboot和开源uboot并无大差异,故飞腾uboot固件命令可以直接从网上搜索开源uboot相关命令。 这里为了便于大家调试,将一些可能用到的命令说明一下。 在 Uboot 命令行下,输入 help 将打印所有的可用命令,复杂命令操作,通过命令 help 的方式获取具体说明。 1.help命令 …

时序预测 | MATLAB实现DBN-SVM深度置信网络结合支持向量机时间序列预测(多指标评价)

时序预测 | MATLAB实现DBN-SVM深度置信网络结合支持向量机时间序列预测(多指标评价) 目录 时序预测 | MATLAB实现DBN-SVM深度置信网络结合支持向量机时间序列预测(多指标评价)效果一览基本描述程序设计参考资料 效果一览 基本描述 MATLAB实现DBN-SVM深度置信网络结合支持向量机…

校招算法题实在不会做,有没有关系?

文章目录 前言一、校招二、时间复杂度1、单层循环2、双层循环 三、空间复杂度四、数据结构五、校招算法题实在不会做&#xff0c;有没有关系&#xff1f;六、英雄算法集训 前言 英雄算法联盟八月集训 已经接近尾声&#xff0c;九月算法集训将于 09月01日 正式开始&#xff0c;目…

.NET 8 Preview 7 中的 ASP.NET Core 更新

作者&#xff1a;Daniel Roth 排版&#xff1a;Alan Wang .NET 8 Preview 7 现在已经发布&#xff0c;其中包括了对 ASP.NET Core 的许多重要更新。 以下是预览版本中新增功能的摘要&#xff1a; 服务器和中间件 防伪中间件 API 编写 最小 API 的防伪集成 Native AOT 请求委托…

市值暴跌后,每日优鲜能否靠2亿融资“续命”?

濒临破产退市的每日优鲜&#xff0c;靠转型实现“自救”&#xff1f; 作为“生鲜电商第一股”&#xff0c;每日优鲜在上市1年后爆发生存危机。 8月4日&#xff0c;每日优鲜(NDAQ:MF)公布了2022年报&#xff0c;尽管去年7月其宣布关闭营收占比约90%的DWM业务&#xff0c;全面终…

Kafka 消费者“group_name”组正在永远重新平衡

目录 一、场景1.1、场景应用环境1.2、 问题重现二、问题分析三、解决方案一、场景 1.1、场景应用环境 卡夫卡:2.11-1.0.1。主题:并发度为 5 且分区为 5 。1.2、 问题重现 当应用程序重新启动并且在分区分配之前在主题上发布消息时,主题的 5 个消费者找到组协调器并向组协调…