postgresql 内核源码分析 btree索引的增删查代码基本原理流程分析,索引膨胀的原因在这里

B-Tree索引代码流程分析

专栏内容

  • postgresql内核源码分析
  • 手写数据库toadb
  • 并发编程

开源贡献

  • toadb开源库

个人主页:我的主页
管理社区:开源数据库
座右铭:天行健,君子以自强不息;地势坤,君子以厚德载物.

概述

在postgresql最常用的索引就是btree,它支持范围和等值查询。

本文主要介绍btree的代码的入口,接口定义,主要涉及索引的查询,插入,删除,和数据的清理操作。

前言

索引是为了更快的找到实际数据表中的数据,那么索引键值就非常小,可以一次性从磁盘读取大量的索引数据。
但是有些索引值中存储了实际数据,与数据是一一对应的,就是密集型索引,而有一些索引并不存储实际数据,而是存储范围内的最大最小值,此类型索引叫做稀疏索引;

对于密集型索引,如主键,直接可以得到对应的数据位置或对应列的数据,btree算法就可以支持此类型的索引;
而稀疏索引,查到索引后,需要再遍历数据表,或者二级索引才能命中目标数据。

代码入口

postgresql中为了代码的解耦,定义了索引操作的结构体,基成员是一组统一的操作和标识选项;
对于btree的定义如下,可以在这里找到btree索引的操作接口名称,在实际实用的只是调用结构体的成员,也就是函数指针。

/** Btree handler function: return IndexAmRoutine with access method parameters* and callbacks.*/
Datum
bthandler(PG_FUNCTION_ARGS)
{IndexAmRoutine *amroutine = makeNode(IndexAmRoutine);amroutine->amstrategies = BTMaxStrategyNumber;amroutine->amsupport = BTNProcs;amroutine->amoptsprocnum = BTOPTIONS_PROC;amroutine->amcanorder = true;amroutine->amcanorderbyop = false;amroutine->amcanbackward = true;amroutine->amcanunique = true;amroutine->amcanmulticol = true;amroutine->amoptionalkey = true;amroutine->amsearcharray = true;amroutine->amsearchnulls = true;amroutine->amstorage = false;amroutine->amclusterable = true;amroutine->ampredlocks = true;amroutine->amcanparallel = true;amroutine->amcaninclude = true;amroutine->amusemaintenanceworkmem = false;amroutine->amsummarizing = false;amroutine->amparallelvacuumoptions =VACUUM_OPTION_PARALLEL_BULKDEL | VACUUM_OPTION_PARALLEL_COND_CLEANUP;amroutine->amkeytype = InvalidOid;amroutine->ambuild = btbuild;amroutine->ambuildempty = btbuildempty;amroutine->aminsert = btinsert;amroutine->ambulkdelete = btbulkdelete;amroutine->amvacuumcleanup = btvacuumcleanup;amroutine->amcanreturn = btcanreturn;amroutine->amcostestimate = btcostestimate;amroutine->amoptions = btoptions;amroutine->amproperty = btproperty;amroutine->ambuildphasename = btbuildphasename;amroutine->amvalidate = btvalidate;amroutine->amadjustmembers = btadjustmembers;amroutine->ambeginscan = btbeginscan;amroutine->amrescan = btrescan;amroutine->amgettuple = btgettuple;amroutine->amgetbitmap = btgetbitmap;amroutine->amendscan = btendscan;amroutine->ammarkpos = btmarkpos;amroutine->amrestrpos = btrestrpos;amroutine->amestimateparallelscan = btestimateparallelscan;amroutine->aminitparallelscan = btinitparallelscan;amroutine->amparallelrescan = btparallelrescan;PG_RETURN_POINTER(amroutine);
}

我们首先来看索引的基本操作,查询btgettuple,插入btinsert和删除。

索引查询

索引查询的调用栈

  • ExecIndexScan

在执行计划中会有索引查询的节点,如ExecIndexScan, 发起索引查询,通过索引查找到数据表的tuple;

  • -> IndexNext

返回数据表的tuple, 如果是稀疏索引,此处会进行二次查找;

  • -> index_getnext_slot

返回数据表的tuple,此处会使用索引找到的tid,在数据表中查找,并检查可见性,如果不可见,那继续查找下一条;

  • -> index_getnext_tid

返回索引键中的记录的tid;

  • ->btgettuple

在索引中查找, 通过遍历比较,命中查找键对应的索引项

查找索引数据的基本流程

索引的查找大致分为两个步骤:

  • 找到起始点,也就是查找键值
  • 从起始点开始扫描,返回符合条件的索引项

代码分析

索引的查询入口函数是 btgettuple,下面是它的实现;

bool
btgettuple(IndexScanDesc scan, ScanDirection dir)
{BTScanOpaque so = (BTScanOpaque) scan->opaque;bool		res;/* btree indexes are never lossy */scan->xs_recheck = false;/** If we have any array keys, initialize them during first call for a* scan.  We can't do this in btrescan because we don't know the scan* direction at that time.*/if (so->numArrayKeys && !BTScanPosIsValid(so->currPos)){/* punt if we have any unsatisfiable array keys */if (so->numArrayKeys < 0)return false;_bt_start_array_keys(scan, dir);}/* This loop handles advancing to the next array elements, if any */do{/** If we've already initialized this scan, we can just advance it in* the appropriate direction.  If we haven't done so yet, we call* _bt_first() to get the first item in the scan.*/if (!BTScanPosIsValid(so->currPos))res = _bt_first(scan, dir);		else{/** Check to see if we should kill the previously-fetched tuple.*/if (scan->kill_prior_tuple){/** Yes, remember it for later. (We'll deal with all such* tuples at once right before leaving the index page.)  The* test for numKilled overrun is not just paranoia: if the* caller reverses direction in the indexscan then the same* item might get entered multiple times. It's not worth* trying to optimize that, so we don't detect it, but instead* just forget any excess entries.*/if (so->killedItems == NULL)so->killedItems = (int *)palloc(MaxTIDsPerBTreePage * sizeof(int));if (so->numKilled < MaxTIDsPerBTreePage)so->killedItems[so->numKilled++] = so->currPos.itemIndex;}/** Now continue the scan.*/res = _bt_next(scan, dir);}/* If we have a tuple, return it ... */if (res)break;/* ... otherwise see if we have more array keys to deal with */} while (so->numArrayKeys && _bt_advance_array_keys(scan, dir));return res;
}
  • 初始化查找点;从代码来看,进入循环后,先 BTScanPosIsValid(so->currPos) 判断currPos是否有效,也就是查找点是否已经初始化;如果没有初始化,则调用 _bt_first 进行初始化;
  • 扫描索引项; 初始化查找点后,调用 _bt_next 获取一条索引项数据,找到有效索引后就会返回;

索引插入

索引插入调用栈

从insert来看,调用路径如下

  • ExecInsert

SQL insert语句的执行入口函数

  • -> ExecInsertIndexTuples

如果当前表中建有索引,在表数据tuple插入后,调用此函数插入索引,有可能存在多个索引,循环对每个索引调用下级函数进行插入;

  • index_insert

索引插入的公共调用接口,实际调用对应索引的插入定义接口;

  • btinsert

btree索引插入的操作的入口函数; 在此函数中,首先拼装一个索引tuple,然后调用下级函数进行插入;

  • _bt_doinsert

执行索引项的插入,会经过查找位置,检查唯一性,插入等一系列流程环节;

索引插入的基本流程

索引插入的大体流程主要有以下环节:

  • 查找索引项插入的位置,因为btree是一个有序的树,所以先要找到插入的位置,保持顺序; 此时会与索引查询类似,先初始化查找键,并找到查询点;
  • 唯一性约束的检查,如果索引中属性列都为NULL,是不进行唯一性检查的;
  • 索引的插入环节,调用_bt_insertonpg来完成,其中会有查找空闲空间,可能会索引分裂等;

代码分析

索引插入的入函数是 btinsert,实际执行是 _bt_doinsert,下面来看一下执行的代码流程;

bool
_bt_doinsert(Relation rel, IndexTuple itup,IndexUniqueCheck checkUnique, bool indexUnchanged,Relation heapRel)
{bool		is_unique = false;BTInsertStateData insertstate;BTScanInsert itup_key;BTStack		stack;bool		checkingunique = (checkUnique != UNIQUE_CHECK_NO);/* we need an insertion scan key to do our search, so build one */itup_key = _bt_mkscankey(rel, itup);if (checkingunique){if (!itup_key->anynullkeys){/* No (heapkeyspace) scantid until uniqueness established */itup_key->scantid = NULL;}else{checkingunique = false;/* Tuple is unique in the sense that core code cares about */Assert(checkUnique != UNIQUE_CHECK_EXISTING);is_unique = true;}}insertstate.itup = itup;insertstate.itemsz = MAXALIGN(IndexTupleSize(itup));insertstate.itup_key = itup_key;insertstate.bounds_valid = false;insertstate.buf = InvalidBuffer;insertstate.postingoff = 0;search:stack = _bt_search_insert(rel, heapRel, &insertstate);if (checkingunique){TransactionId xwait;uint32		speculativeToken;xwait = _bt_check_unique(rel, &insertstate, heapRel, checkUnique,&is_unique, &speculativeToken);if (unlikely(TransactionIdIsValid(xwait))){/* Have to wait for the other guy ... */_bt_relbuf(rel, insertstate.buf);insertstate.buf = InvalidBuffer;if (speculativeToken)SpeculativeInsertionWait(xwait, speculativeToken);elseXactLockTableWait(xwait, rel, &itup->t_tid, XLTW_InsertIndex);/* start over... */if (stack)_bt_freestack(stack);goto search;}/* Uniqueness is established -- restore heap tid as scantid */if (itup_key->heapkeyspace)itup_key->scantid = &itup->t_tid;}if (checkUnique != UNIQUE_CHECK_EXISTING){OffsetNumber newitemoff;CheckForSerializableConflictIn(rel, NULL, BufferGetBlockNumber(insertstate.buf));newitemoff = _bt_findinsertloc(rel, &insertstate, checkingunique,indexUnchanged, stack, heapRel);_bt_insertonpg(rel, heapRel, itup_key, insertstate.buf, InvalidBuffer,stack, itup, insertstate.itemsz, newitemoff,insertstate.postingoff, false);}else{/* just release the buffer */_bt_relbuf(rel, insertstate.buf);}/* be tidy */if (stack)_bt_freestack(stack);pfree(itup_key);return is_unique;
}

代码流程如下:

  • 初始化工作; 初始化查找键;
  • 查找插入位置; 调用 _bt_search_insert 进行查询到一个有足够空闲空间的叶子节点page;
  • 检查唯一性约束;检查唯一性约束,如果有冲突事务,则等待冲突事务执行完成后,再重新查询位置,再检查唯一性约束;然后对结果的判断checkUnique != UNIQUE_CHECK_EXISTING,如果违返那么插入结束;否则执行插入动作;
  • 索引插入;先确定插入位置,再调用_bt_insertonpg;

索引删除

索引的更新,就是删除和插入操作,这里我们来看一下索引删除的概要流程。
对于数据表的tuple的删除,数据并没有真实删除,所以对应的索引项也不会删除,那么什么时候删除索引项呢?

删除索引基本流程

在进行vacuum 或进行 prune paga时,对于HOT链都会在每个page上留下最后一个数据元组,因为同一个page内的HOT链只对应一个索引项,留下这最后一个也是为了删除索引项。
当进行vacuum 索引时,就会通过这个dead tuple找到对应的索引项,先删除索引项,再删除dead tuple。
常常说索引的性能下降了,其实就是索引膨胀导致,也就是deadtuple变多,导致待删除索引项变多,查询效率大降低,同时也会带来索引IO的增加。

代码分析

  • vac_bulkdel_one_index

调用 通用索引处理接口;

  • ->index_bulk_delete

这里通用索引处理接口,其中调用对应索引的处理接口,这里是调用btree索引处理;

  • ->btbulkdelete

btree对应的批量删除接口; 避免退出的影响,在开始时会注册退出的回调函数,在解除共享内存前处理善后;然后调用 btvacuumscan 对所有page进行索引删除清理。

结尾

非常感谢大家的支持,在浏览的同时别忘了留下您宝贵的评论,如果觉得值得鼓励,请点赞,收藏,我会更加努力!

作者邮箱:study@senllang.onaliyun.com
如有错误或者疏漏欢迎指出,互相学习。

注:未经同意,不得转载!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/56067.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

对建造者模式理解

当对象成员变量太多时&#xff0c;使用建造方法给变量赋值往往变得很臃肿&#xff0c;所以可以这样做 public class Something {private String a;private String b;private String c;private String d;private String e;public Something(Builder builder) {this.a builder.…

Qt 自定义菜单 托盘菜单

托盘菜单实现&#xff1a;通过QSystemTrayIconQMenuQAction即可完美实现&#xff01; 实现方式&#xff1a;createActions用于创建菜单、菜单项,translateActions用于设置文本、实现多语化&#xff0c;translateAccount用于设置用户空间配额。 void TrayMenu::createActions(…

基于Pytorch的神经网络部分自定义设计

一、基础概念&#xff08;学习笔记&#xff09; &#xff08;1&#xff09;训练误差和泛化误差[1] 本质上&#xff0c;优化和深度学习的目标是根本不同的。前者主要关注的是最小化目标&#xff0c;后者则关注在给定有限数据量的情况下寻找合适的模型。训练误差和泛化误差通常不…

WinPlan经营大脑:精准预测,科学决策,助力企业赢得未来

近年,随着国内掀起数字化浪潮,“企业数字化转型”成为大势所趋下的必选项。但数据显示,大约79%的中小企业还处于数字化转型初期,在“企业经营管理”上存在着巨大的挑战和风险。 WinPlan经营大脑针对市场现存的企业经营管理难题,提供一站式解决方案,助力企业经营管理转型…

webassembly001 webassembly简述

WebAssembly 官方地址:https://webassembly.org/相关历史 https://en.wikipedia.org/wiki/WebAssembly https://brendaneich.com/2015/06/from-asm-js-to-webassembly/WebAssembly&#xff08;缩写为Wasm&#xff09;是一种基于堆栈的虚拟机的二进制指令格式。Wasm 被设计为编…

redis jedis 单元测试 报错集锦 汇总 junit

redis报错汇总 在单元测试时&#xff0c;使用jedis通常遇到如下报错&#xff1a; 实例化报错->连接报错->权限报错。此报错是有顺序的&#xff1a;例如&#xff0c;若连接报错&#xff0c;说明实例化完成&#xff0c;即配置文件配对了。若权限报错&#xff0c;说明连接…

C++ 容器

string 1. 构造 string s1(); // 1 string s2("hello"); // hello string s3(3, k); // kkk string s4("hellohello", 2, 4); // lloh2. 赋值 string s1 "hellohello"; // hellohello string s2.assign(s1); // he…

macOS 安装 Homebrew 详细过程

文章目录 macOS 安装 Homebrew 详细过程Homebrew 简介Homebrew 安装过程设置环境变量安装 Homebrew安装完成后续设置(重要)设置环境变量homebrew 镜像源设置macOS 安装 Homebrew 详细过程 本文讲解了如何使用中科大源安装 Homebrew 的安装过程,文章里面的所有步骤都是必要的,需…

从C语言到C++_35(异常)C++异常的使用+异常体系+异常优缺点

目录 1. 异常的基本使用 1.1 异常的概念 1.2 异常的抛出和匹配原则 1.3 函数调用链中异常栈展开匹配原则 1.4 异常的重新抛出 1.5 异常的安全问题 1.6 C98和C11的异常规范 2. 自定义异常体系 2.1 异常继承体系 2.2 异常体系中的重新抛出 3. C标准库的异常体系 4. C…

【allegro 17.4软件操作保姆级教程十二】插件器件封装制作

&#x1f449;个人主页&#xff1a; highman110 &#x1f449;作者简介&#xff1a;一名硬件工程师&#xff0c;持续学习&#xff0c;不断记录&#xff0c;保持思考&#xff0c;输出干货内容 目录 制作插件焊盘 放置pin脚 绘制丝印线和装配线 放置位号和value 放置1脚标识…

【VsCode】SSH远程连接Linux服务器开发,搭配cpolar内网穿透实现公网访问(1)

文章目录 前言1、安装OpenSSH2、vscode配置ssh3. 局域网测试连接远程服务器4. 公网远程连接4.1 ubuntu安装cpolar内网穿透4.2 创建隧道映射4.3 测试公网远程连接 5. 配置固定TCP端口地址5.1 保留一个固定TCP端口地址5.2 配置固定TCP端口地址5.3 测试固定公网地址远程 前言 远程…

CSS中如何实现文字阴影效果(text-shadow)?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 实现思路⭐ 示例⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&#xff01;这个专栏是为那些对Web开发感兴趣、刚刚踏入前…

Python采集关键词结果辅助写作

大家好&#xff01;在进行学术研究和 写作时&#xff0c;获取准确、全面的文献资料和相关研究成果是非常重要的。在本文中&#xff0c;我将与你分享使用Python爬虫 采集 学术关键词结果来辅助 写作的方法&#xff0c;帮助你快速获取与研究主题相关的学术文献和 。 **1. 设置搜索…

Pygame编程(9)font模块

Pygame编程&#xff08;9&#xff09;font模块 函数示例 函数 pygame.font.init 初始化字体模块init() -> None pygame.font.quit 反初始化字体模块quit() -> None pygame.font.get_init True,如果字体模块已初始化get_init() -> bool pygame.font.get_default_font …

【React学习】—SetState的使用(九)

【React学习】—SetState的使用&#xff08;九&#xff09; state的简写方式 state属性总结

兄弟,王者荣耀的段位排行榜是通过Redis实现的?

目录 一、排行榜设计方案1、数据库直接排序2、王者荣耀好友排行 二、Redis实现计数器1、什么是计数器功能&#xff1f;2、Redis实现计数器的原理&#xff08;1&#xff09;使用INCR命令实现计数器&#xff08;2&#xff09;使用INCRBY命令实现计数器 三、通过Redis实现“王者荣…

【Redis从头学-13】Redis哨兵模式解析以及搭建指南

&#x1f9d1;‍&#x1f4bb;作者名称&#xff1a;DaenCode &#x1f3a4;作者简介&#xff1a;啥技术都喜欢捣鼓捣鼓&#xff0c;喜欢分享技术、经验、生活。 &#x1f60e;人生感悟&#xff1a;尝尽人生百味&#xff0c;方知世间冷暖。 &#x1f4d6;所属专栏&#xff1a;Re…

8.7.tensorRT高级(3)封装系列-调试方法、思想讨论

目录 前言1. 模型调试技巧总结 前言 杜老师推出的 tensorRT从零起步高性能部署 课程&#xff0c;之前有看过一遍&#xff0c;但是没有做笔记&#xff0c;很多东西也忘了。这次重新撸一遍&#xff0c;顺便记记笔记。 本次课程学习 tensorRT 高级-调试方法、思想讨论 课程大纲可看…

渗透测试漏洞原理之---【XSS 跨站脚本攻击】

文章目录 1、跨站 脚本攻击1.1、漏洞描述1.2、漏洞原理1.3、漏洞危害1.4、漏洞验证1.5、漏洞分类1.5.1、反射性XSS1.5.2、存储型XSS1.5.3、DOM型XSS 2、XSS攻防2.1、XSS构造2.1.1、利用<>2.1.2、JavaScript伪协议2.1.3、时间响应 2.2、XSS变形方式2.2.1、大小写转换2.2.2…

开源与专有软件:比较与对比

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…