大模型从入门到应用——LangChain:链(Chains)-[链与索引:图问答(Graph QA)和带来源的问答(QA with Sources)]

分类目录:《大模型从入门到应用》总目录


图问答(Graph QA)

创建图

在本节中,我们构建一个示例图。目前,这对于较小的文本片段效果最好,下面的示例中我们只使用一个小片段,因为提取知识三元组对硬件有一定要求:

from langchain.indexes import GraphIndexCreator
from langchain.llms import OpenAI
from langchain.document_loaders import TextLoaderindex_creator = GraphIndexCreator(llm=OpenAI(temperature=0))
with open("../../state_of_the_union.txt") as f:all_text = f.read()text = "\n".join(all_text.split("\n\n")[105:108])
text

输出:

'It won’t look like much, but if you stop and look closely, you’ll see a “Field of dreams,” the ground on which America’s future will be built. \nThis is where Intel, the American company that helped build Silicon Valley, is going to build its $20 billion semiconductor “mega site”. \nUp to eight state-of-the-art factories in one place. 10,000 new good-paying jobs. '

我们可以创建图并查看:

graph.get_triples()

输出:

[('Intel', '$20 billion semiconductor "mega site"', 'is going to build'),('Intel', 'state-of-the-art factories', 'is building'),('Intel', '10,000 new good-paying jobs', 'is creating'),('Intel', 'Silicon Valley', 'is helping build'),('Field of dreams',"America's future will be built",'is the ground on which')]
查询图

现在我们可以使用图问答链来向图中提问:

from langchain.chains import GraphQAChain
chain = GraphQAChain.from_llm(OpenAI(temperature=0), graph=graph, verbose=True)
chain.run("what is Intel going to build?")

日志输出:

> Entering new GraphQAChain chain...
Entities Extracted:
Intel
Full Context:
Intel is going to build $20 billion semiconductor "mega site"
Intel is building state-of-the-art factories
Intel is creating 10,000 new good-paying jobs
Intel is helping build Silicon Valley> Finished chain.

输出:

' Intel is going to build a $20 billion semiconductor "mega site" with state-of-the-art factories, creating 10,000 new good-paying jobs and helping to build Silicon Valley.'
保存图

我们还可以保存和加载图:

from langchain.indexes.graph import NetworkxEntityGraphgraph.write_to_gml("graph.gml")
loaded_graph = NetworkxEntityGraph.from_gml("graph.gml")
loaded_graph.get_triples()

输出:

[('Intel', '$20 billion semiconductor "mega site"', 'is going to build'),('Intel', 'state-of-the-art factories', 'is building'),('Intel', '10,000 new good-paying jobs', 'is creating'),('Intel', 'Silicon Valley', 'is helping build'),('Field of dreams',"America's future will be built",'is the ground on which')]

带来源的问答(Q&A with Sources)

本节介绍如何使用LangChain在文档列表上进行带来源的问答。它涵盖了四种不同的链式类型:stuffmap_reducerefinemap-rerank。有关这些链式类型的更详细解释,可以参考文章《大模型从入门到应用——LangChain:链(Chains)-[链与索引:问答的基础知识]》。

准备数据

首先,我们需要准备数据。在本示例中,我们对一个向量数据库进行相似性搜索,但这些文档可以以任何方式获取,本节的重点是强调在获取文档后的步骤。

from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.embeddings.cohere import CohereEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch
from langchain.vectorstores import Chroma
from langchain.docstore.document import Document
from langchain.prompts import PromptTemplatewith open("../../state_of_the_union.txt") as f:state_of_the_union = f.read()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_text(state_of_the_union)embeddings = OpenAIEmbeddings()
docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))])

日志输出:

Running Chroma using direct local API.
Using DuckDB in-memory for database. Data will be transient.

输入:

query = "What did the president say about Justice Breyer"
docs = docsearch.similarity_search(query)from langchain.chains.qa_with_sources import load_qa_with_sources_chain
from langchain.llms import OpenAIchain = load_qa_with_sources_chain(OpenAI(temperature=0), chain_type="stuff")
query = "What did the president say about Justice Breyer"
chain({"input_documents": docs, "question": query}, return_only_outputs=True)

输出:

{'output_text': ' The president thanked Justice Breyer for his service.\nSOURCES: 30-pl'}
stuff类型的链

本节展示了使用stuff类型的链进行带来源的问答的结果。

chain = load_qa_with_sources_chain(OpenAI(temperature=0), chain_type="stuff")
query = "What did the president say about Justice Breyer"
chain({"input_documents": docs, "question": query}, return_only_outputs=True)

输出:

{'output_text': ' The president thanked Justice Breyer for his service.\nSOURCES: 30-pl'}
自定义提示

我们还可以在stuff类型的链中使用自定义提示,在下面这个示例中,我们将用意大利语回答:

template = """Given the following extracted parts of a long document and a question, create a final answer with references ("SOURCES"). 
If you don't know the answer, just say that you don't know. Don't try to make up an answer.
ALWAYS return a "SOURCES" part in your answer.
Respond in Italian.QUESTION: {question}
=========
{summaries}
=========
FINAL ANSWER IN ITALIAN:"""
PROMPT = PromptTemplate(template=template, input_variables=["summaries", "question"])chain = load_qa_with_sources_chain(OpenAI(temperature=0), chain_type="stuff", prompt=PROMPT)
query = "What did the president say about Justice Breyer"
chain({"input_documents": docs, "question": query}, return_only_outputs=True)

输出:

{'output_text': '\nNon so cosa abbia detto il presidente riguardo a Justice Breyer.\nSOURCES: 30, 31, 33'}
map_reduce 类型的链

本节展示了使用map_reduce 类型的链进行带来源的问答的结果。

chain = load_qa_with_sources_chain(OpenAI(temperature=0), chain_type="map_reduce")
query = "What did the president say about Justice Breyer"
chain({"input_documents": docs, "question": query}, return_only_outputs=True)

输出:

{'output_text': ' The president thanked Justice Breyer for his service.\nSOURCES: 30-pl'}
中间步骤

我们还可以返回map_reduce 类型的链的中间步骤,以供检查。这可以通过设置return_intermediate_steps变量来实现。

chain = load_qa_with_sources_chain(OpenAI(temperature=0), chain_type="map_reduce", return_intermediate_steps=True)
chain({"input_documents": docs, "question": query}, return_only_outputs=True)

输出:

{'intermediate_steps': [' "Tonight, I’d like to honor someone who has dedicated his life to serve this country: Justice Stephen Breyer—an Army veteran, Constitutional scholar, and retiring Justice of the United States Supreme Court. Justice Breyer, thank you for your service."',' None',' None',' None'],'output_text': ' The president thanked Justice Breyer for his service.\nSOURCES: 30-pl'}
自定义提示

我们还可以在map_reduce 类型的链中使用自定义提示,在下面这个示例中,我们将用意大利语回答:

question_prompt_template = """Use the following portion of a long document to see if any of the text is relevant to answer the question. 
Return any relevant text in Italian.
{context}
Question: {question}
Relevant text, if any, in Italian:"""
QUESTION_PROMPT = PromptTemplate(template=question_prompt_template, input_variables=["context", "question"]
)combine_prompt_template = """Given the following extracted parts of a long document and a question, create a final answer with references ("SOURCES"). 
If you don't know the answer, just say that you don't know. Don't try to make up an answer.
ALWAYS return a "SOURCES" part in your answer.
Respond in Italian.QUESTION: {question}
=========
{summaries}
=========
FINAL ANSWER IN ITALIAN:"""
COMBINE_PROMPT = PromptTemplate(template=combine_prompt_template, input_variables=["summaries", "question"]
)chain = load_qa_with_sources_chain(OpenAI(temperature=0), chain_type="map_reduce", return_intermediate_steps=True, question_prompt=QUESTION_PROMPT, combine_prompt=COMBINE_PROMPT)
chain({"input_documents": docs, "question": query}, return_only_outputs=True)

输出:

{'intermediate_steps': ["\nStasera vorrei onorare qualcuno che ha dedicato la sua vita a servire questo paese: il giustizia Stephen Breyer - un veterano dell'esercito, uno studioso costituzionale e un giustizia in uscita della Corte Suprema degli Stati Uniti. Giustizia Breyer, grazie per il tuo servizio.",' Non pertinente.',' Non rilevante.'," Non c'è testo pertinente."],'output_text': ' Non conosco la risposta. SOURCES: 30, 31, 33, 20.'}
批处理大小

在使用map_reduce链时,要注意的一点是在映射步骤中使用的批处理大小。如果批处理大小过大,可能会导致速率限制错误。您可以通过设置所使用的 LLM 的批处理大小来控制此参数。请注意,这仅适用于具有此参数的 LLM。以下是一个设置批处理大小的示例:

llm = OpenAI(batch_size=5, temperature=0)

refine类型的链

本部分展示了使用refine类型的链进行带来源的问答的结果。

chain = load_qa_with_sources_chain(OpenAI(temperature=0), chain_type="refine")
query = "What did the president say about Justice Breyer"
chain({"input_documents": docs, "question": query}, return_only_outputs=True)

输出:

{'output_text': "\n\nThe president said that he was honoring Justice Breyer for his dedication to serving the country and that he was a retiring Justice of the United States Supreme Court. He also thanked him for his service and praised his career as a top litigator in private practice, a former federal public defender, and a family of public school educators and police officers. He noted Justice Breyer's reputation as a consensus builder and the broad range of support he has received from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. He also highlighted the importance of securing the border and fixing the immigration system in order to advance liberty and justice, and mentioned the new technology, joint patrols, dedicated immigration judges, and commitments to support partners in South and Central America that have been put in place. He also expressed his commitment to the LGBTQ+ community, noting the need for the bipartisan Equality Act and the importance of protecting transgender Americans from state laws targeting them. He also highlighted his commitment to bipartisanship, noting the 80 bipartisan bills he signed into law last year, and his plans to strengthen the Violence Against Women Act. Additionally, he announced that the Justice Department will name a chief prosecutor for pandemic fraud and his plan to lower the deficit by more than one trillion dollars in a"}
中间步骤

我们还可以返回refine类型的链的中间步骤,以供检查。这可以通过设置return_intermediate_steps变量来实现。

chain = load_qa_with_sources_chain(OpenAI(temperature=0), chain_type="refine", return_intermediate_steps=True)
chain({"input_documents": docs, "question": query}, return_only_outputs=True)

输出:

{'intermediate_steps': ['\nThe president said that he was honoring Justice Breyer for his dedication to serving the country and that he was a retiring Justice of the United States Supreme Court. He also thanked Justice Breyer for his service.','\n\nThe president said that he was honoring Justice Breyer for his dedication to serving the country and that he was a retiring Justice of the United States Supreme Court. He also thanked Justice Breyer for his service, noting his background as a top litigator in private practice, a former federal public defender, and a family of public school educators and police officers. He praised Justice Breyer for being a consensus builder and for receiving a broad range of support from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. He also noted that in order to advance liberty and justice, it was necessary to secure the border and fix the immigration system, and that the government was taking steps to do both. \n\nSource: 31','\n\nThe president said that he was honoring Justice Breyer for his dedication to serving the country and that he was a retiring Justice of the United States Supreme Court. He also thanked Justice Breyer for his service, noting his background as a top litigator in private practice, a former federal public defender, and a family of public school educators and police officers. He praised Justice Breyer for being a consensus builder and for receiving a broad range of support from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. He also noted that in order to advance liberty and justice, it was necessary to secure the border and fix the immigration system, and that the government was taking steps to do both. He also mentioned the need to pass the bipartisan Equality Act to protect LGBTQ+ Americans, and to strengthen the Violence Against Women Act that he had written three decades ago. \n\nSource: 31, 33','\n\nThe president said that he was honoring Justice Breyer for his dedication to serving the country and that he was a retiring Justice of the United States Supreme Court. He also thanked Justice Breyer for his service, noting his background as a top litigator in private practice, a former federal public defender, and a family of public school educators and police officers. He praised Justice Breyer for being a consensus builder and for receiving a broad range of support from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. He also noted that in order to advance liberty and justice, it was necessary to secure the border and fix the immigration system, and that the government was taking steps to do both. He also mentioned the need to pass the bipartisan Equality Act to protect LGBTQ+ Americans, and to strengthen the Violence Against Women Act that he had written three decades ago. Additionally, he mentioned his plan to lower costs to give families a fair shot, lower the deficit, and go after criminals who stole billions in relief money meant for small businesses and millions of Americans. He also announced that the Justice Department will name a chief prosecutor for pandemic fraud. \n\nSource: 20, 31, 33'],'output_text': '\n\nThe president said that he was honoring Justice Breyer for his dedication to serving the country and that he was a retiring Justice of the United States Supreme Court. He also thanked Justice Breyer for his service, noting his background as a top litigator in private practice, a former federal public defender, and a family of public school educators and police officers. He praised Justice Breyer for being a consensus builder and for receiving a broad range of support from the Fraternal Order of Police to former judges appointed by Democrats and Republicans. He also noted that in order to advance liberty and justice, it was necessary to secure the border and fix the immigration system, and that the government was taking steps to do both. He also mentioned the need to pass the bipartisan Equality Act to protect LGBTQ+ Americans, and to strengthen the Violence Against Women Act that he had written three decades ago. Additionally, he mentioned his plan to lower costs to give families a fair shot, lower the deficit, and go after criminals who stole billions in relief money meant for small businesses and millions of Americans. He also announced that the Justice Department will name a chief prosecutor for pandemic fraud. \n\nSource: 20, 31, 33'}
自定义提示

我们还可以在refine类型的链中使用自定义提示,在下面这个示例中,我们将用意大利语回答:

refine_template = ("The original question is as follows: {question}\n""We have provided an existing answer, including sources: {existing_answer}\n""We have the opportunity to refine the existing answer""(only if needed) with some more context below.\n""------------\n""{context_str}\n""------------\n""Given the new context, refine the original answer to better ""answer the question (in Italian)""If you do update it, please update the sources as well. ""If the context isn't useful, return the original answer."
)
refine_prompt = PromptTemplate(input_variables=["question", "existing_answer", "context_str"],template=refine_template,
)question_template = ("Context information is below. \n""---------------------\n""{context_str}""\n---------------------\n""Given the context information and not prior knowledge, ""answer the question in Italian: {question}\n"
)
question_prompt = PromptTemplate(input_variables=["context_str", "question"], template=question_template
)
chain = load_qa_with_sources_chain(OpenAI(temperature=0), chain_type="refine", return_intermediate_steps=True, question_prompt=question_prompt, refine_prompt=refine_prompt)
chain({"input_documents": docs, "question": query}, return_only_outputs=True)

输出:

{'intermediate_steps': ['\nIl presidente ha detto che Justice Breyer ha dedicato la sua vita al servizio di questo paese e ha onorato la sua carriera.',"\n\nIl presidente ha detto che Justice Breyer ha dedicato la sua vita al servizio di questo paese, ha onorato la sua carriera e ha contribuito a costruire un consenso. Ha ricevuto un ampio sostegno, dall'Ordine Fraterno della Polizia a ex giudici nominati da democratici e repubblicani. Inoltre, ha sottolineato l'importanza di avanzare la libertà e la giustizia attraverso la sicurezza delle frontiere e la risoluzione del sistema di immigrazione. Ha anche menzionato le nuove tecnologie come scanner all'avanguardia per rilevare meglio il traffico di droga, le pattuglie congiunte con Messico e Guatemala per catturare più trafficanti di esseri umani, l'istituzione di giudici di immigrazione dedicati per far sì che le famiglie che fuggono da per","\n\nIl presidente ha detto che Justice Breyer ha dedicato la sua vita al servizio di questo paese, ha onorato la sua carriera e ha contribuito a costruire un consenso. Ha ricevuto un ampio sostegno, dall'Ordine Fraterno della Polizia a ex giudici nominati da democratici e repubblicani. Inoltre, ha sottolineato l'importanza di avanzare la libertà e la giustizia attraverso la sicurezza delle frontiere e la risoluzione del sistema di immigrazione. Ha anche menzionato le nuove tecnologie come scanner all'avanguardia per rilevare meglio il traffico di droga, le pattuglie congiunte con Messico e Guatemala per catturare più trafficanti di esseri umani, l'istituzione di giudici di immigrazione dedicati per far sì che le famiglie che fuggono da per","\n\nIl presidente ha detto che Justice Breyer ha dedicato la sua vita al servizio di questo paese, ha onorato la sua carriera e ha contribuito a costruire un consenso. Ha ricevuto un ampio sostegno, dall'Ordine Fraterno della Polizia a ex giudici nominati da democratici e repubblicani. Inoltre, ha sottolineato l'importanza di avanzare la libertà e la giustizia attraverso la sicurezza delle frontiere e la risoluzione del sistema di immigrazione. Ha anche menzionato le nuove tecnologie come scanner all'avanguardia per rilevare meglio il traffico di droga, le pattuglie congiunte con Messico e Guatemala per catturare più trafficanti di esseri umani, l'istituzione di giudici di immigrazione dedicati per far sì che le famiglie che fuggono da per"],'output_text': "\n\nIl presidente ha detto che Justice Breyer ha dedicato la sua vita al servizio di questo paese, ha onorato la sua carriera e ha contribuito a costruire un consenso. Ha ricevuto un ampio sostegno, dall'Ordine Fraterno della Polizia a ex giudici nominati da democratici e repubblicani. Inoltre, ha sottolineato l'importanza di avanzare la libertà e la giustizia attraverso la sicurezza delle frontiere e la risoluzione del sistema di immigrazione. Ha anche menzionato le nuove tecnologie come scanner all'avanguardia per rilevare meglio il traffico di droga, le pattuglie congiunte con Messico e Guatemala per catturare più trafficanti di esseri umani, l'istituzione di giudici di immigrazione dedicati per far sì che le famiglie che fuggono da per"}

map-rerank 类型的链

本节展示了使用map-rerank 类型的链进行带来源的问答的结果。

chain = load_qa_with_sources_chain(OpenAI(temperature=0), chain_type="map_rerank", metadata_keys=['source'], return_intermediate_steps=True)
query = "What did the president say about Justice Breyer"
result = chain({"input_documents": docs, "question": query}, return_only_outputs=True)
result["output_text"]

输出:

' The President thanked Justice Breyer for his service and honored him for dedicating his life to serve the country.'

输入:

result["intermediate_steps"]

输出:

[{'answer': ' The President thanked Justice Breyer for his service and honored him for dedicating his life to serve the country.','score': '100'},{'answer': ' This document does not answer the question', 'score': '0'},{'answer': ' This document does not answer the question', 'score': '0'},{'answer': ' This document does not answer the question', 'score': '0'}]
自定义提示

我们还可以在map-rerank 类型的链中使用自定义提示,在下面这个示例中,我们将用意大利语回答:

from langchain.output_parsers import RegexParseroutput_parser = RegexParser(regex=r"(.*?)\nScore: (.*)",output_keys=["answer", "score"],
)prompt_template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.In addition to giving an answer, also return a score of how fully it answered the user's question. This should be in the following format:Question: [question here]
Helpful Answer In Italian: [answer here]
Score: [score between 0 and 100]Begin!Context:
---------
{context}
---------
Question: {question}
Helpful Answer In Italian:"""
PROMPT = PromptTemplate(template=prompt_template,input_variables=["context", "question"],output_parser=output_parser,
)
chain = load_qa_with_sources_chain(OpenAI(temperature=0), chain_type="map_rerank", metadata_keys=['source'], return_intermediate_steps=True, prompt=PROMPT)
query = "What did the president say about Justice Breyer"
result = chain({"input_documents": docs, "question": query}, return_only_outputs=True)
result

输出:

{'source': 30,
'intermediate_steps': [{'answer': ' Il presidente ha detto che Justice Breyer ha dedicato la sua vita a servire questo paese e ha onorato la sua carriera.','score': '100'},
{'answer': ' Il presidente non ha detto nulla sulla Giustizia Breyer.','score': '100'},
{'answer': ' Non so.', 'score': '0'},
{'answer': ' Il presidente non ha detto nulla sulla giustizia Breyer.','score': '100'}],
'output_text': ' Il presidente ha detto che Justice Breyer ha dedicato la sua vita a servire questo paese e ha onorato la sua carriera.'}

参考文献:
[1] LangChain官方网站:https://www.langchain.com/
[2] LangChain 🦜️🔗 中文网,跟着LangChain一起学LLM/GPT开发:https://www.langchain.com.cn/
[3] LangChain中文网 - LangChain 是一个用于开发由语言模型驱动的应用程序的框架:http://www.cnlangchain.com/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/56015.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【LeetCode-中等题】54. 螺旋矩阵

文章目录 题目方法一&#xff1a;按层模拟 题目 方法一&#xff1a;按层模拟 思路就是定义四个指针边界&#xff0c;按顺序扫完一遍&#xff0c;再缩小区域再扫描 public List<Integer> spiralOrder(int[][] matrix) {List<Integer> order new ArrayList<Int…

爬虫逆向实战(二十三)--某准网数据

一、数据接口分析 主页地址&#xff1a;某准网 1、抓包 通过抓包可以发现数据接口是api_to/search/company_v2.json 2、判断是否有加密参数 请求参数是否加密&#xff1f; 通过查看“载荷”模块可以发现b参数和kiv参数是加密参数 请求头是否加密&#xff1f; 无响应是否加…

mysql sql 执行流程

监控查询缓存的命中率 show status like ‘%qcache%’; mysql 缓存机制&#xff0c;以及 8.0 为啥取消 select sql_NO_Cache * from 表 where xxx; # 不使用缓存

AI 插件:未来的浏览器、前端与交互

想象一下&#xff0c;你在浏览器中粘贴一个 URL&#xff0c;这个 URL 不仅仅是一个网址&#xff0c;而是一个功能强大、能执行多种任务的 AI 插件。这听起来像是未来的事情&#xff0c;但实际上&#xff0c;这种变革已经悄悄进行中。 1. 插件的魅力与局限性 当我第一次接触到…

node.js 简单实验 创建一个简单的web服务

概要&#xff1a;用一个最简单是例子感受一下node.js 的能力 1.代码 var http require("http") http.createServer(function (request, response) { response.writeHead(200, {Content-Type: text/plain}); response.end(Hello World\n); }).listen(8081); cons…

使用Python爬虫采集网络热点

在当今信息爆炸的时代&#xff0c;了解网络热搜词和热点事件对于我们保持时事敏感性和把握舆论动向非常重要。在本文中&#xff0c;我将与你分享使用Python爬虫采集网络热搜词和热点事件的方法&#xff0c;帮助你及时获取热门话题和热点新闻。 1. 网络热搜词采集 网络热搜词是人…

微服务引擎 MSE 全新升级,15 分钟快速体验微服务全栈能力

作者&#xff1a;草谷 前言 微服务引擎 MSE 全新发布&#xff01;新版本带来了一系列令人振奋的特性和改进&#xff0c;让您更轻松、高效地构建和管理微服务应用程序。从快速入门到迁移优化&#xff0c;MSE 为开发人员提供了全方位的支持和解决方案。无论您是刚刚接触微服务还…

C++学习笔记总结练习:内存对齐

概述 概念 编译器为程序中的每个“数据单元”安排在适当的位置上。 原因 平台原因(移植原因)&#xff1a;不是所有的硬件平台都能访问任意地址上的任意数据的&#xff1b;某些硬件平台只能在某些地址处取某些特定类型的数据&#xff0c;否则抛出硬件异常。性能原因&#xf…

Python --数据库操作

目录 1&#xff0c; mysql 1-1&#xff0c; mysql驱动 1-2&#xff0c; 连接mysql 1-3&#xff0c; 执行sql语句 1-3-1&#xff0c; 创建表 1-3-2&#xff0c; 插入数据 1-3-3&#xff0c; 查询数据 1-3-4&#xff0c; 获取结果集 1-4&#xff0c; 断开mysql连接 1&am…

java练习8.100m小球落地

题目: 如一个小球从100米高度自由落下&#xff0c;每次落地后就反跳回原高度的一半。 那么求它在第10次落地时&#xff0c;共经过多少米&#xff1f;第10次反弹多高&#xff1f; public static void main(String[] args) {/*假如一个小球从100米高度自由落下&#xff0c;每次落…

保姆级教程:从0到1使用Stable Diffusion XL训练LoRA模型 |【人人都是算法专家】

Rocky Ding 公众号&#xff1a;WeThinkIn 写在前面 【人人都是算法专家】栏目专注于分享Rocky在AI行业中对业务/竞赛/研究/产品维度的思考与感悟。欢迎大家一起交流学习&#x1f4aa; 大家好&#xff0c;我是Rocky。 Rocky在知乎上持续撰写Stable Diffusion XL全方位的解析文章…

不系安全带抓拍自动识别

不系安全带抓拍自动识别系统通过yolo系列算法框架模型利用高清摄像头&#xff0c;不系安全带抓拍自动识别算法对高空作业场景进行监控&#xff0c;当检测到人员未佩戴安全带时会自动抓拍并进行告警记录。YOLO系列算法是一类典型的one-stage目标检测算法&#xff0c;其利用ancho…

持续更新串联记忆English words

&#xff08;一&#xff09;这是一组关于“服装搭配”的单词。通过在记忆中检索&#xff0c;回忆起隐藏的信息吧~ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>今日单词>>&…

计算机安全学习笔记(I):访问控制安全原理

访问控制原理 从广义上来讲&#xff0c;所有的计算机安全都与访问控制有关。 RFC 4949: Internet Security Glossary, Version 2 (rfc-editor.org) RFC 4949 定义的计算机安全&#xff1a;用来实现和保证计算机系统的安全服务的措施&#xff0c;特别是保证访问控制服务的措施…

c++11 标准模板(STL)(std::basic_istringstream)(二)

定义于头文件 <sstream> template< class CharT, class Traits std::char_traits<CharT> > class basic_ostringstream;(C11 前)template< class CharT, class Traits std::char_traits<CharT>, class Allocator std::allo…

成集云 | 旺店通多包裹数据同步钉钉 | 解决方案

源系统成集云目标系统 方案介绍 随着品牌电商兴起&#xff0c;线上线下开始逐渐融为一体&#xff0c;成集云以旺店通ERP系统为例&#xff0c;通过成集云-旺店通连接器&#xff0c;将旺店通ERP系统多包裹数据同步至钉钉实现数据互通&#xff0c;帮助企业解决了电商发货存在的错…

华为数通方向HCIP-DataCom H12-821题库(单选题:61-80)

第61题 关于 BGP 的Keepalive报文消息的描述,错误的是 A、Keepalive周期性的在两个BGP邻居之间发送 B、Keepalive报文主要用于对等路由器间的运行状态和链路的可用性确认 C、Keepalive 报文只包含一个BGP数据报头 D、缺省情况下,Keepalive 的时间间隔是180s 答案&#xff…

基于SSM的医院管理系统——LW模板

摘 要 21世纪&#xff0c;在科学技术的飞速发展的社会下&#xff0c;人们对科学技术以及信息化时代有着新的认识&#xff0c;不同领域的人们对科技水平都有着不同的发展&#xff0c;而科技信息也慢慢的渗透进了各行各业当中。 本文将从基于SSM的医院管理系统的现状和开发背景介…

Nuxt 菜鸟入门学习笔记三:视图

文章目录 入口文件组件 Components页面 Pages布局 Layouts Nuxt 官网地址&#xff1a; https://nuxt.com/ Nuxt 提供多个组件层来实现应用程序的用户界面。 入口文件 App.vue组件 Components页面 Pages布局 Layouts 下面逐一进行介绍。 入口文件 默认情况下&#xff0c;Nu…

LSF 安装目录,快速参考 LSF 命令、守护程序、配置文件、日志文件和重要集群配置参数

样本 UNIX 和 Linux 安装目录 守护程序错误日志文件 守护程序错误日志文件存储在 LSF_LOGDIR 在 lsf.conf 文件中定义的目录中。 LSF 基本系统守护程序日志文件LSF 批处理系统守护程序日志文件pim.log.host_namembatchd.log.host_namembatchd.log.host_namesbatchd.log.host_…