@Transactional注解简介
@Transactional是spring中声明式事务管理的注解配置方式,相信这个注解的作用大家都很清楚。@Transactional注解可以帮助我们把事务开启、提交或者回滚的操作,通过aop的方式进行管理。通过@Transactional注解就能让spring为我们管理事务,免去了重复的事务管理逻辑,减少对业务代码的侵入,使我们开发人员能够专注于业务层面开发。
我们知道实现@Transactional原理是基于spring aop,aop又是动态代理模式的实现,通过对源码的阅读,总结出下面的步骤来了解实际中,在spring 是如何利用aop来实现@Transactional的功能的。如果对spring的aop实现原理不了解,可以看aop实现原理分析。
spring中声明式事务实现原理猜想
- 首先,对于spring中aop实现原理有了解的话,应该知道想要对一个方法进行代理的话,肯定需要定义切点。在@Transactional的实现中,同样如此,spring为我们定义了以 @Transactional 注解为植入点的切点,这样才能知道@Transactional注解标注的方法需要被代理。
- 有了切面定义之后,在spring的bean的初始化过程中,就需要对实例化的bean进行代理,并且生成代理对象。
- 生成代理对象的代理逻辑中,进行方法调用时,需要先获取切面逻辑,@Transactional注解的切面逻辑类似于@Around,在spring中是实现一种类似代理逻辑。
@Transactional作用
根据上面的原理猜想,下面简单介绍每个步骤的源码以进行验证。
首先是@Transactional,作用是定义代理植入点。【aop实现原理分析】中,分析知道代理对象创建的通过BeanPostProcessor的实现类AnnotationAwareAspectJAutoProxyCreator的postProcessAfterInstantiation方法来实现个,如果需要进行代理,那么在这个方法就会返回一个代理对象给容器,同时判断植入点也是在这个方法中。
那么下面开始分析,在配置好注解驱动方式的事务管理之后,spring会在ioc容器创建一个BeanFactoryTransactionAttributeSourceAdvisor实例,这个实例可以看作是一个切点,在判断一个bean在初始化过程中是否需要创建代理对象,都需要验证一次BeanFactoryTransactionAttributeSourceAdvisor是否是适用这个bean的切点。如果是,就需要创建代理对象,并且把BeanFactoryTransactionAttributeSourceAdvisor实例注入到代理对象中。
其中【aop实现原理分析】知道在AopUtils#findAdvisorsThatCanApply中判断切面是否适用当前bean,可以在这个地方断点分析调用堆栈,AopUtils#findAdvisorsThatCanApply一致调用,最终通过以下代码判断是否适用切点。
- AbstractFallbackTransactionAttributeSource#computeTransactionAttribute(Method method, Class<?> targetClass) 这里可以根据参数打上条件断点进行调试分析调用栈,targetClass就是目标class
- …一系列调用
- 最终SpringTransactionAnnotationParser#parseTransactionAnnotation(java.lang.reflect.AnnotatedElement)
@Override
public TransactionAttribute parseTransactionAnnotation(AnnotatedElement ae) {//这里就是分析Method是否被@Transactional注解标注,有的话,不用说BeanFactoryTransactionAttributeSourceAdvisor适配当前bean,进行代理,并且注入切点//BeanFactoryTransactionAttributeSourceAdvisorAnnotationAttributes attributes = AnnotatedElementUtils.getMergedAnnotationAttributes(ae, Transactional.class);if (attributes != null) {return parseTransactionAnnotation(attributes);}else {return null;}
}
上面就是判断是否需要根据@Transactional进行代理对象创建的判断过程。@Transactional的作用一个就是标识方法需要被代理,一个就是携带事务管理需要的一些属性信息。
动态代理逻辑实现
【aop实现原理分析】中知道,aop最终的代理对象的代理方法是
- DynamicAdvisedInterceptor#intercept
所以我们可以在这个方法断点分析代理逻辑。
@Override
public Object intercept(Object proxy, Method method, Object[] args, MethodProxy methodProxy) throws Throwable {Object oldProxy = null;boolean setProxyContext = false;Class<?> targetClass = null;Object target = null;try {if (this.advised.exposeProxy) {// Make invocation available if necessary.oldProxy = AopContext.setCurrentProxy(proxy);setProxyContext = true;}// May be null. Get as late as possible to minimize the time we// "own" the target, in case it comes from a pool...target = getTarget();if (target != null) {targetClass = target.getClass();}//followList<Object> chain = this.advised.getInterceptorsAndDynamicInterceptionAdvice(method, targetClass);Object retVal;// Check whether we only have one InvokerInterceptor: that is,// no real advice, but just reflective invocation of the target.if (chain.isEmpty() && Modifier.isPublic(method.getModifiers())) {// We can skip creating a MethodInvocation: just invoke the target directly.// Note that the final invoker must be an InvokerInterceptor, so we know// it does nothing but a reflective operation on the target, and no hot// swapping or fancy proxying.Object[] argsToUse = AopProxyUtils.adaptArgumentsIfNecessary(method, args);retVal = methodProxy.invoke(target, argsToUse);}else {// We need to create a method invocation...retVal = new CglibMethodInvocation(proxy, target, method, args, targetClass, chain, methodProxy).proceed();}retVal = processReturnType(proxy, target, method, retVal);return retVal;}finally {if (target != null) {releaseTarget(target);}if (setProxyContext) {// Restore old proxy.AopContext.setCurrentProxy(oldProxy);}}
}
通过分析 List chain = this.advised.getInterceptorsAndDynamicInterceptionAdvice(method, targetClass)
返回的是TransactionInterceptor
,利用TransactionInterceptor是如何实现代理逻辑调用的?
跟踪new CglibMethodInvocation(proxy, target, method, args, targetClass, chain, methodProxy).proceed();
发现最终是调用TransactionInterceptor#invoke方法,并且把CglibMethodInvocation注入到invoke方法中,从上面可以看到CglibMethodInvocation是包装了目标对象的方法调用的所有必须信息,因此,在TransactionInterceptor#invoke里面也是可以调用目标方法的,并且还可以实现类似@Around的逻辑,在目标方法调用前后继续注入一些其他逻辑,比如事务管理逻辑。
TransactionInterceptor–最终事务管理者
下面看代码。
- TransactionInterceptor#invoke
@Override
public Object invoke(final MethodInvocation invocation) throws Throwable {// Work out the target class: may be {@code null}.// The TransactionAttributeSource should be passed the target class// as well as the method, which may be from an interface.Class<?> targetClass = (invocation.getThis() != null ? AopUtils.getTargetClass(invocation.getThis()) : null);// Adapt to TransactionAspectSupport's invokeWithinTransaction...return invokeWithinTransaction(invocation.getMethod(), targetClass, new InvocationCallback() {@Overridepublic Object proceedWithInvocation() throws Throwable {return invocation.proceed();}});
}
继续跟踪invokeWithinTransaction,下面的代码中其实就可以看出一些逻辑端倪,就是我们猜想的实现方式,事务管理。
protected Object invokeWithinTransaction(Method method, Class<?> targetClass, final InvocationCallback invocation)throws Throwable {// If the transaction attribute is null, the method is non-transactional.final TransactionAttribute txAttr = getTransactionAttributeSource().getTransactionAttribute(method, targetClass);final PlatformTransactionManager tm = determineTransactionManager(txAttr);final String joinpointIdentification = methodIdentification(method, targetClass);if (txAttr == null || !(tm instanceof CallbackPreferringPlatformTransactionManager)) {// Standard transaction demarcation with getTransaction and commit/rollback calls.//开启事务TransactionInfo txInfo = createTransactionIfNecessary(tm, txAttr, joinpointIdentification);Object retVal = null;try {// This is an around advice: Invoke the next interceptor in the chain.// This will normally result in a target object being invoked.//方法调用retVal = invocation.proceedWithInvocation();}catch (Throwable ex) {// target invocation exception//回滚事务completeTransactionAfterThrowing(txInfo, ex);throw ex;}finally {cleanupTransactionInfo(txInfo);}//提交事务commitTransactionAfterReturning(txInfo);return retVal;}else {// It's a CallbackPreferringPlatformTransactionManager: pass a TransactionCallback in.try {Object result = ((CallbackPreferringPlatformTransactionManager) tm).execute(txAttr,new TransactionCallback<Object>() {@Overridepublic Object doInTransaction(TransactionStatus status) {TransactionInfo txInfo = prepareTransactionInfo(tm, txAttr, joinpointIdentification, status);try {return invocation.proceedWithInvocation();}catch (Throwable ex) {if (txAttr.rollbackOn(ex)) {// A RuntimeException: will lead to a rollback.if (ex instanceof RuntimeException) {throw (RuntimeException) ex;}else {throw new ThrowableHolderException(ex);}}else {// A normal return value: will lead to a commit.return new ThrowableHolder(ex);}}finally {cleanupTransactionInfo(txInfo);}}});// Check result: It might indicate a Throwable to rethrow.if (result instanceof ThrowableHolder) {throw ((ThrowableHolder) result).getThrowable();}else {return result;}}catch (ThrowableHolderException ex) {throw ex.getCause();}}
}
总结
最终可以总结一下整个流程,跟开始的猜想对照。
分析源码后对照