前言
HashMap是一个散列表,它存储的内容是键值对(key-value)映射。
1 定义
public class HashMap<K,V> extends AbstractMap<K,V>implements Map<K,V>, Cloneable, Serializable {}
由HashMap定义可以看出
1) HashMap<K,V>表示支持泛型
2)继承自AbstractMap抽象类,实现对于Map容器的操作方法。
3)实现Map接口,实现Map接口中定义的诸多方法。
4)实现Cloneable接口,
5)实现Serializable接口,保证容器的可序列化。
2 属性值
HashMap的属性值含义已在代码注释中给出。
//默认初始化容量大小,必须为2的幂的数,初始为16static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; //最大容量值static final int MAXIMUM_CAPACITY = 1 << 30;//默认负载因子为0.75,代表table的填充度static final float DEFAULT_LOAD_FACTOR = 0.75f;//链表长度阈值,HashMap采用数组+链表形式存储//当链表长度过长影响查询效率,因此当链表长度超过此值时,链表转为红黑树形式存储,以提升效率。static final int TREEIFY_THRESHOLD = 8;static final int UNTREEIFY_THRESHOLD = 6;//树最小容量static final int MIN_TREEIFY_CAPACITY = 64;//存储节点的数组transient Node<K,V>[] table;transient Set<Map.Entry<K,V>> entrySet;// 容器中键值对的数目transient int size;transient int modCount;//阈值,超过阈值则需要扩容int threshold;//负载因子final float loadFactor;//节点数据结构static class Node<K,V> implements Map.Entry<K,V> {//哈希值final int hash;//键值final K key;//对应元素值V value;//指向下一个节点Node<K,V> next;//构造方法Node(int hash, K key, V value, Node<K,V> next) {this.hash = hash;this.key = key;this.value = value;this.next = next;}public final K getKey() { return key; }public final V getValue() { return value; }public final String toString() { return key + "=" + value; }public final int hashCode() {return Objects.hashCode(key) ^ Objects.hashCode(value);}public final V setValue(V newValue) {V oldValue = value;value = newValue;return oldValue;}public final boolean equals(Object o) {if (o == this)return true;if (o instanceof Map.Entry) {Map.Entry<?,?> e = (Map.Entry<?,?>)o;if (Objects.equals(key, e.getKey()) &&Objects.equals(value, e.getValue()))return true;}return false;}}
3 构造方法
1) 无参数
//采用默认值初始化public HashMap() {this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted}
2)初始化容量为initialCapacity
public HashMap(int initialCapacity) {this(initialCapacity, DEFAULT_LOAD_FACTOR);}
3)初始化容量为initialCapacity,负载因子为loadFactor
public HashMap(int initialCapacity, float loadFactor) {if (initialCapacity < 0)throw new IllegalArgumentException("Illegal initial capacity: " +initialCapacity);if (initialCapacity > MAXIMUM_CAPACITY)initialCapacity = MAXIMUM_CAPACITY;if (loadFactor <= 0 || Float.isNaN(loadFactor))throw new IllegalArgumentException("Illegal load factor: " +loadFactor);this.loadFactor = loadFactor;this.threshold = tableSizeFor(initialCapacity);}
4)使用集合初始化
public HashMap(Map<? extends K, ? extends V> m) {this.loadFactor = DEFAULT_LOAD_FACTOR;putMapEntries(m, false);}//遍历集合,将集合中元素添加到this容器中final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {int s = m.size();if (s > 0) {if (table == null) { // pre-sizefloat ft = ((float)s / loadFactor) + 1.0F;int t = ((ft < (float)MAXIMUM_CAPACITY) ?(int)ft : MAXIMUM_CAPACITY);if (t > threshold)threshold = tableSizeFor(t);}else if (s > threshold)resize();for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {K key = e.getKey();V value = e.getValue();putVal(hash(key), key, value, false, evict);}}}
4 核心方法
方法 | 含义 | 时间复杂度 |
---|---|---|
get(Object key) | 根据key获取value | O(1) |
put(K key, V value) | 存储键值对 | O(1) |
containsKey(Object key) | 是否包含key | O(n) |
containsValue(Object value) | 是否包含value | O(n) |
remove(Object key) | 删除key对应的value | O(n) |
size() | 容器元素数目 | O(1) |
isEmpty() | 集合是否为空 | O(1) |
clear() | 清空集合 | O(n) |
5 put()方法
put()
方法添加键值对。在分析put()
过程中会发现HashMap中有红黑树的实现过程。HashMap是采用数组加链表的方式存储数据的,当链表长度过长时影响查找效率,因此当链表长度超过一定阈值时,将链表结构转为红黑树存储,提升查找效率。
//添加键为key,值为valuepublic V put(K key, V value) {return putVal(hash(key), key, value, false, true);}//添加键值对的方法final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {//使用到的中间变量Node<K,V>[] tab; Node<K,V> p; int n, i;//如果当前数组为空,或者表长度为0,调用resize()方法重新分配容量if ((tab = table) == null || (n = tab.length) == 0)n = (tab = resize()).length;// 如果数组中对应的索引位置的节点p为空,即不存在冲突情况,直接将键值对存储在索引为i位置。if ((p = tab[i = (n - 1) & hash]) == null)tab[i] = newNode(hash, key, value, null);//若存在冲突,则需要遍历链表寻找添加位置else {Node<K,V> e; K k;//如果节点p的键值与待存储节点的键值相同,将p节点赋给e节点//后面会对e几点进行判断,如果不为空,则将e节点的值赋值为value,采用替换的方式存储新的键值对,保证key的不可重复。if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))e = p;// 如果p节点的类型是TreeNode,,说明此时p节点所处的链表已经转为红黑树存储的方式。则调用红黑树的添加节点方法,添加新的节点 else if (p instanceof TreeNode)e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);//p节点的键不重复,且当前仍采用链表形式存储 ,则遍历p节点为头节点的链表else {//链表的遍历,binCount记录链表的长度for (int binCount = 0; ; ++binCount) {//查到到链表尾if ((e = p.next) == null) {// 将新键值对创建的节点插在链表尾p.next = newNode(hash, key, value, null);// 判断链表长度有没有过长,超过限定值,若超过,则需改为红黑树的形式存储if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st// treeifyBin的作用在于将链表结构改为红黑树存储treeifyBin(tab, hash);break;}// 在遍历链表过程中发现了有相同key的节点,则采用替换方式。if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))break;p = e;}}//如果e节点不为空,说明存在相同key,则替换此节点的value,并返回旧的valueif (e != null) { // existing mapping for keyV oldValue = e.value;if (!onlyIfAbsent || oldValue == null)e.value = value;afterNodeAccess(e);return oldValue;}}++modCount;//更新键值对数目,并判断是否需要扩容。if (++size > threshold)resize();afterNodeInsertion(evict);return null;}//resize方法进行重新分配容量final Node<K,V>[] resize() {//获取旧表Node<K,V>[] oldTab = table;//旧表为空oldCap=0,否则oldCap = 旧表长度int oldCap = (oldTab == null) ? 0 : oldTab.length;// 存储旧阈值int oldThr = threshold;int newCap, newThr = 0;//旧表不为空if (oldCap > 0) {// 原数组长度大于最大容量(1073741824) 则将threshold设为Integer.MAX_VALUE=2147483647// 接近MAXIMUM_CAPACITY的两倍if (oldCap >= MAXIMUM_CAPACITY) {threshold = Integer.MAX_VALUE;return oldTab;}//没有达到最大容量,则容量扩大二倍,同时阈值扩大二倍else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&oldCap >= DEFAULT_INITIAL_CAPACITY)newThr = oldThr << 1; // double threshold}else if (oldThr > 0) // initial capacity was placed in threshold// 如果原来的thredshold大于0则将容量设为原来的thredshold// 在第一次带参数初始化时候会有这种情况newCap = oldThr;else { // zero initial threshold signifies using defaults// 在默认无参数初始化会有这种情况newCap = DEFAULT_INITIAL_CAPACITY;newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);}if (newThr == 0) {// loadFactor 哈希负载因子 默认0.75,可在初始化时传入,16*0.75=12 可以放12个键值对float ft = (float)newCap * loadFactor;newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?(int)ft : Integer.MAX_VALUE);}//设置新的临界值threshold = newThr;@SuppressWarnings({"rawtypes","unchecked"})//扩容操作,创建新的容量大小的数组newTabNode<K,V>[] newTab = (Node<K,V>[])new Node[newCap];table = newTab;// 如果原来的table有数据,则将数据复制到新的table中if (oldTab != null) {// for循环遍历旧数组for (int j = 0; j < oldCap; ++j) {Node<K,V> e;if ((e = oldTab[j]) != null) {oldTab[j] = null;if (e.next == null)//如果当前节点不存在下一个节点,即此节点为存储在数组中的节点//将节点e添加至数组索引为e.hash & (newCap - 1)的位置。newTab[e.hash & (newCap - 1)] = e;else if (e instanceof TreeNode)//如果节点e是TreeNode// 如果e节点时红黑树的节点,则调用TreeNode的split()方法// 由于红黑树的知识也是比较复杂,本篇中不做过多解释。这里只说明树的各类方法的作用。split()方法是拆分红黑树,以实现节点的重新映射。((TreeNode<K,V>)e).split(this, newTab, j, oldCap);else { // 如果e节点是链表中的节点,则实现链表的复制//链表的复制操作,即将旧表中的含有e节点的链表复制到新表中Node<K,V> loHead = null, loTail = null;Node<K,V> hiHead = null, hiTail = null;Node<K,V> next;do {next = e.next;if ((e.hash & oldCap) == 0) {if (loTail == null)loHead = e;elseloTail.next = e;loTail = e;}else {if (hiTail == null)hiHead = e;elsehiTail.next = e;hiTail = e;}} while ((e = next) != null);if (loTail != null) {loTail.next = null;newTab[j] = loHead;}if (hiTail != null) {hiTail.next = null;newTab[j + oldCap] = hiHead;}}}}}//返回扩容后的新表return newTab;}
6 get()方法
get()
方法根据键值获取元素值.
public V get(Object key) {Node<K,V> e;//查找键值为key的节点,查找成功返回value值,否则返回null。return (e = getNode(hash(key), key)) == null ? null : e.value;}final Node<K,V> getNode(int hash, Object key) {Node<K,V>[] tab; Node<K,V> first, e; int n; K k;//检查集合不为空,将first指向第一个节点if ((tab = table) != null && (n = tab.length) > 0 &&(first = tab[(n - 1) & hash]) != null) {if (first.hash == hash && // always check first node((k = first.key) == key || (key != null && key.equals(k))))//查找到节点,返回节点return first;if ((e = first.next) != null) {// 如果节点e类型为红黑树的节点类型,则调用getTreeNode()方法返回节点。getTreeNode()方法是完成红黑树的查找操作。if (first instanceof TreeNode)return ((TreeNode<K,V>)first).getTreeNode(hash, key);// 如果节点e为普通类型的节点,则遍历链表查找do {if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))return e;} while ((e = e.next) != null);}}//没有查找到返回nullreturn null;}
7 contains()方法
//判断是否包含键keypublic boolean containsKey(Object key) {//同样采用getNode方法进行查找,查找结果不为null则说明存在return getNode(hash(key), key) != null;}//是否包含valuepublic boolean containsValue(Object value) {Node<K,V>[] tab; V v;if ((tab = table) != null && size > 0) {for (int i = 0; i < tab.length; ++i) {for (Node<K,V> e = tab[i]; e != null; e = e.next) {if ((v = e.value) == value ||(value != null && value.equals(v)))return true;}}}return false;}
8 remove()方法
@Overridepublic boolean remove(Object key, Object value) {return removeNode(hash(key), key, value, true, true) != null;}//删除节点final Node<K,V> removeNode(int hash, Object key, Object value,boolean matchValue, boolean movable) {Node<K,V>[] tab; Node<K,V> p; int n, index;if ((tab = table) != null && (n = tab.length) > 0 &&(p = tab[index = (n - 1) & hash]) != null) {Node<K,V> node = null, e; K k; V v;//查找节点操作if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))node = p;else if ((e = p.next) != null) {// 红黑树的节点查找if (p instanceof TreeNode)node = ((TreeNode<K,V>)p).getTreeNode(hash, key);else {//链表的节点查找do {if (e.hash == hash &&((k = e.key) == key ||(key != null && key.equals(k)))) {node = e;break;}p = e;} while ((e = e.next) != null);}}if (node != null && (!matchValue || (v = node.value) == value ||(value != null && value.equals(v)))) {//查找到的节点为红黑树节点,则调用红黑树的删除节点方法if (node instanceof TreeNode)((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);else if (node == p)// 查找到的节点属于数组table中的元素,则直接将tab中的元素重新赋值tab[index] = node.next;else//链表的节点赋值p.next = node.next;++modCount;//更新数目--size;afterNodeRemoval(node);return node;}}return null;}
9 小结
HashMap采用数组+链表的方式存储键值对,当链表长度超过限定阈值,则将链表结构调整为红黑树,提高查找效率。通过源码可以看出在添加键值对时没有null检查,因此HashMap是允许null值的。
10 对比
1) HashMap允许将null作为一个entry的key或者value,而Hashtable不允许。
2) 由于HashMap非线程安全,Hashtable是线程安全的。
3)HashMap增加了红黑树。