求解整数规划问题的割平面法和分支定界法

文章目录

  • 整数规划
  • 割平面法
  • 分支定界法
  • 代码实现

整数规划

整数规划问题是优化变量必须取整数值的线性或非线性规划问题,不过,在大多数情况下,整数规划问题指的是整数线性规划问题。

其数学模型为
m i n f ( x ) = c T x s.t A x = b x ≥ 0 x i ∈ I , i ∈ I ⊂ { 1 , 2 , . . . , n } min \quad f(\pmb x)=\pmb c^T\pmb x \\ \text{s.t} \quad \pmb A\pmb x=\pmb b \\ \pmb x ≥ 0\\ x_i \in I, i\in I \subset\{1,2,...,n\} minf(x)=cTxs.tAx=bx0xiI,iI{1,2,...,n}
特别地,如果 I = { 0 , 1 } I = \{0, 1\} I={0,1},上述模型也被称为0-1规划问题。

相比此前已经介绍的线性规划问题,整数规划问题其实就是多了组整数约束。鉴于两者如此紧密的关系,如下所示的线性规划问题被称为整数规划问题的松弛问题。
m i n f ( x ) = c T x s.t A x = b x ≥ 0 min \quad f(\pmb x)=\pmb c^T\pmb x \\ \text{s.t} \quad \pmb A\pmb x=\pmb b \\ \pmb x ≥ 0 minf(x)=cTxs.tAx=bx0

虽然看起来只是优化变量多了组整数条件的约束,但是在理论上,整数规划问题的求解已经不再是多项式复杂度了。

目前最常用的整数规划问题求解算法有两个:割平面法和分支定界法。不用被名字吓到,它们的本质都只是在单纯形法之外再额外增加一些算法逻辑,从而保证可以取到整数解。而这些算法逻辑,更像是算法框架,通过简单的实例就能描述清楚其背后的设计思想。

割平面法

本节通过求解如下的一个整数规划问题,来说明割平面法的算法原理。
m i n z = − 5 x 1 − 8 x 2 s.t x 1 + x 2 + x 3 = 6 5 x 1 + 9 x 2 + x 4 = 45 x 1 , x 2 , x 3 , x 4 ≥ 0 , 且只能取整数 min \quad z= -5x_1-8x_2 \\ \text{s.t} \quad x_1+x_2+x_3=6 \\ \nonumber 5x_1+9x_2+x_4=45 \\ \nonumber x_1,x_2,x_3,x_4≥0,且只能取整数 minz=5x18x2s.tx1+x2+x3=65x1+9x2+x4=45x1,x2,x3,x40,且只能取整数
首先计算其对应的松弛问题,得到最优解为
x 1 = 9 / 4 , x 2 = 15 / 4 x_1=9/4,x_2=15/4 x1=9/4,x2=15/4
下图中,A点即为最优解。显然,该解并不满足优化变量为整数的约束。


此时,割平面法的思路是:先把A点附近的非整数区域从可行域中切掉,然后再重新计算最优解。“切”的数学描述可以表达为:给松弛问题增加一个约束。本实例中,约束的表达式为
0.75 x 3 + 0.25 x 4 ≥ 0.75 0.75x_3+0.25x_4≥0.75 0.75x3+0.25x40.75
增加约束后,可行域如下图所示,重新求解得到最优解为
x 1 = 0 , x 2 = 5 x_1=0,x_2=5 x1=0,x2=5
该解虽然是求解松弛问题得到的最优解,但由于也满足整数条件的约束,所以也自然是原整数规划的最优解。

现在唯一的问题就只有:如何得到新增的约束表达式?接下来详细阐述。

切割前,最优解对应的单纯形表如下所示。单纯形表是基于单纯形法得来的,这篇文章给予了详细说明。本文不单开章节描述单纯形表的创建和迭代过程,主要是因为在实际应用时并不需要这些。

-5-800
C_bbx_1x_2x_3x_4
-5x_19/4109/4-1/4
-8x_215/401-5/41/4

从单纯形表的 x 2 x_2 x2那一行,可知
15 4 = 0 x 1 + 1 x 2 − 5 4 x 3 + 1 4 x 4 \frac{15}{4}=0x_1+1x_2-\frac{5}{4}x_3+\frac{1}{4}x_4 415=0x1+1x245x3+41x4
将系数的整数部分和小数部分拆开,可得
3 + 3 4 = ( 0 + 0 ) x 1 + ( 1 + 0 ) x 2 + ( − 2 + 3 4 ) x 3 + ( 0 + 1 4 ) x 4 3+\frac{3}{4}=(0+0)x_1+(1+0)x_2+(-2+\frac{3}{4})x_3+(0+\frac{1}{4})x_4 3+43=(0+0)x1+(1+0)x2+(2+43)x3+(0+41)x4

合并整数和小数部分
( 0 x 1 + 1 x 2 − 2 x 3 + 0 x 4 − 3 ) + ( 0 x 1 + 0 x 2 + 3 4 x 3 + 1 4 x 4 ) = 3 4 (0x_1+1x_2-2x_3+0x_4-3)+(0x_1+0x_2+\frac{3}{4}x_3+\frac{1}{4}x_4)=\frac{3}{4} (0x1+1x22x3+0x43)+(0x1+0x2+43x3+41x4)=43

等式左边第一项为整数部分,而等式右边为 [ 0 , 1 ] [0,1] [0,1]的小数,所以等式左边第二项的小数部分必然大于等于右边的值,即
( 0 x 1 + 0 x 2 + 3 4 x 3 + 1 4 x 4 ) ≥ 3 4 (0x_1+0x_2+\frac{3}{4}x_3+\frac{1}{4}x_4)≥\frac{3}{4} (0x1+0x2+43x3+41x4)43
该式即刚刚我们要添加的约束。

当然了,从图上可以看出,横纵坐标是 x 1 , x 2 x_1,x_2 x1,x2,但是约束条件是关于 x 3 , x 4 x_3,x_4 x3,x4,所以要做可视化的话,还需要转换一下
x 3 = 6 − x 1 − x 2 , x 4 = 45 − 5 x 1 − 9 x 2 x_3=6-x_1-x_2, \quad x_4 = 45 - 5x_1 - 9x_2 x3=6x1x2,x4=455x19x2
然后代入新添加的约束,变为
2 x 1 + 3 x 2 ≤ 15 2x_1+3x_2≤15 2x1+3x215
这样就可以画出如上所示的图了。

至于为什么要选择 x 2 x_2 x2那一行来构造新的约束,这主要是因为,有经验表明,使用小数部分最大的那一行来构造约束,收敛会更快。

分支定界法

相比割平面法,分枝定界法的思路更容易理解。

以如下的实例为例:
m i n f ( x ) = − 10 x 1 − 20 x 2 s.t 5 x 1 + 8 x 2 ≤ 60 x 1 ≤ 8 x 2 ≤ 4 x 1 , x 2 ≥ 0 , 且只能取整数 min \quad f(\pmb x)= -10x_1-20x_2 \\ \text{s.t} \quad 5x_1+8x_2≤60 \\ x_1≤8 \\ x_2≤4 \\ x_1,x_2≥0,且只能取整数 minf(x)=10x120x2s.t5x1+8x260x18x24x1,x20,且只能取整数

(1) 定义P为原整数规划问题,P0为其对应的松弛问题,最优解为
x 0 = ( 5.6 , 4 ) , f 0 = − 136 \pmb x_0=(5.6,4),f_0=-136 x0=(5.6,4),f0=136
由于 x 0 \pmb x_0 x0不满足整数约束,所以该解并不是P的最优解。但是P的最优解 f ∗ f^\ast f肯定不会低于P0的最优解,所以 f 0 f_0 f0可以作为P的下界
f l b = − 136 f_{lb}=-136 flb=136

此外,我们很容易发现, x = ( 0 , 0 ) \pmb x=(0,0) x=(0,0)是P的一个可行解,此时 f = 0 f=0 f=0,P的最优解 f ∗ f^\ast f不会高于该值,所以P的上界是
f u b = 0 f_{ub}=0 fub=0

(2) 在P0的最优解中,由于 x 1 = 5.6 x_1=5.6 x1=5.6,引入两个互斥的约束条件:
x 1 ≤ 5 , x 1 ≥ 6 x_1≤5,x_1≥6 x15,x16
将这两个约束分别加入P中,得到子问题P1和P2。显然,P的最优解和P1、P2最优解的更小者相同。

求解P1对应的松弛问题,最优解为
x 1 = ( 5 , 4 ) , f 1 = − 130 \pmb x_1=(5,4),f_1=-130 x1=(5,4),f1=130
由于 x 1 \pmb x_1 x1为整数解,所以也是P1的最优解,上界 f u b f_{ub} fub可以修改为
f u b = f 1 = − 130 f_{ub}=f_1=-130 fub=f1=130
由于P1已经得到整数最优解,所以P1不需要再继续被分支。

求解P2对应的松弛问题,最优解为
x 2 = ( 6 , 3.75 ) , f 2 = − 135 \pmb x_2=(6,3.75),f_2=-135 x2=(6,3.75),f2=135
x 2 \pmb x_2 x2不满足整数条件,因此不是P2的最优解,但是 f ∗ f^\ast f不会低于 f 2 f_2 f2,所以可以更新下界
f l b = − 135 f_{lb}=-135 flb=135

(3) 在P2的最优解中,由于 x 2 = 3.75 x_2=3.75 x2=3.75,继续引入两个互斥的约束条件
x 2 ≤ 3 , x 2 ≥ 4 x_2≤3,x_2≥4 x23,x24
将这两个约束分别加入P2中,得到子问题P3和P4。

先求解P4对应的松弛问题,无可行解,所以可以停止分枝。

再求解P3对应的松弛问题,最优解为
x 3 = ( 7.2 , 3 ) , f 3 = − 132 \pmb x_3=(7.2,3),f_3=-132 x3=(7.2,3),f3=132
x 3 \pmb x_3 x3不满足整数条件,因此不是P3的最优解,但是 f ∗ f^\ast f不会低于 f 3 f_3 f3,所以可以继续更新下界
f l b = − 132 f_{lb}=-132 flb=132

(4) 在P3的最优解中,由于 x 1 = 7.2 x_1=7.2 x1=7.2,继续引入两个互斥的约束条件
x 1 ≤ 7 , x 1 ≥ 8 x_1≤7,x_1≥8 x17,x18
将这两个约束分别加入P3中,得到子问题P5和P6。

求解P5对应的松弛问题,最优解为
x 5 = ( 7 , 3 ) , f 5 = − 130 \pmb x_5=(7,3),f_5=-130 x5=(7,3),f5=130
由于 x 5 \pmb x_5 x5为整数解,所以也是P5的最优解,上界 f u b f_{ub} fub可以修改为
f ‾ = f 5 = − 130 \overline f=f_5=-130 f=f5=130
此时,P5不需要再继续被分支。

求解P6对应的松弛问题,最优解为
x 6 = ( 8 , 2.5 ) , f 6 = − 130 \pmb x_6=(8,2.5),f_6=-130 x6=(8,2.5),f6=130
x 6 \pmb x_6 x6不满足整数条件,但是 f 6 f_6 f6并不小于当前上界 f u b f_{ub} fub,所以该分支是“枯枝”,需要剪枝。

结合P5和P6,下界可以更新为
f l b = − 130 f_{lb}=-130 flb=130

此时,我们发现
f u b = f l b = − 130 f_{ub}=f_{lb}=-130 fub=flb=130
所以该问题的最优解为
x 1 = ( 5 , 4 ) 或 x 5 = ( 7 , 3 ) \pmb x_1=(5,4)或\pmb x_5=(7,3) x1=(5,4)x5=(7,3)
对应的目标函数值为
f ∗ = − 130 f^\ast=-130 f=130

分支定界的全过程可以参考下图。

总的来说,割平面法和分支定界法都是先计算原问题对应的松弛问题,然后判断松弛问题的最优解是否也满足整数约束,如果满足,那么皆大欢喜;反之,割平面法会通过增加约束的方式来改进松弛问题的可行域,以期达到松弛问题最优解亦为原问题最优解的目标;而分支定界法则利用分解技术,将原问题分解为若干个子问题并分别计算,然后基于子问题的求解结果持续更新原问题的上下界,直至两者相等。

代码实现

虽然割平面法和分支定界法的步骤看起来挺多的,但好在,求解器已经帮我们做好了集成的工作,所以我们可以直接调用现成的求解器来求解所遇到的整数规划问题。

基于Python调用ortools求解整数规划问题的代码,和此前介绍的线性规划代码的唯一不同点在于:整数规划中优化变量的定义是solver.IntVar,而线性规划中的定义方式是solver.NumVar。

以下是上一节整数规划问题的求解代码。

from ortools.linear_solver import pywraplpif __name__ == '__main__':# 声明ortools求解器,使用SCIP算法solver = pywraplp.Solver.CreateSolver('SCIP')# 优化变量x1 = solver.IntVar(0, 8, 'x1')x2 = solver.IntVar(0, 4., 'x2')# 目标函数solver.Minimize(-10 * x1 - 20 * x2)# 约束条件solver.Add(5 * x1 + 8 * x2 <= 60)# 模型求解status = solver.Solve()# 模型求解成功, 打印结果if status == pywraplp.Solver.OPTIMAL:# 变量最优解print('x1: {}, x2: {}'.format(x1.solution_value(), x2.solution_value()))# 最优目标函数值print('best_f =', solver.Objective().Value())else:print('not converge.')

运行代码后,可以得到最优解如下。显然,该解和上一节推演的结果是一致的。

x1: 5.0, x2: 4.0
best_f = -129.99999999999997

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/55467.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Gitee提交pr】

Gitee提交pr 什么是pr怎样提交一个pr嘞&#xff1f; 什么是pr pr:指的是将自己的修改从自己的账号仓库dev下提交到官方账号仓库master下&#xff1b; 通俗来讲就是Gitee线上有属于自己的分支&#xff0c;然后本地在自己地分支修改完代码之后&#xff0c;提交到自己的线上分支&a…

多线程和并发(1)—等待/通知模型

一、进程通信和进程同步 1.进程通信的方法 同一台计算机的进程通信称为IPC&#xff08;Inter-process communication&#xff09;&#xff0c;不同计 算机之间的进程通信被称为 RPC(Romote process communication)&#xff0c;需要通过网络&#xff0c;并遵守共同的协议。**进…

Redis—Redis介绍(是什么/为什么快/为什么做MySQL缓存等)

一、Redis是什么 Redis 是一种基于内存的数据库&#xff0c;对数据的读写操作都是在内存中完成&#xff0c;因此读写速度非常快&#xff0c;常用于缓存&#xff0c;消息队列、分布式锁等场景。 Redis 提供了多种数据类型来支持不同的业务场景&#xff0c;比如 String(字符串)、…

多态/虚函数/虚函数表

OVERVIEW 多态/虚函数/虚函数表1.虚函数引入后类发生的变化&#xff1f;2.虚函数表的生成时机和生成原因&#xff1f;3.虚函数表指针赋值的时机&#xff1f;4.类对象在内存中的布局&#xff1f;5.虚函数的工作原理和多态性的体现&#xff1f;6.其他问题 多态/虚函数/虚函数表 n…

基于C++的QT实现贪吃蛇小游戏

文章目录&#xff1a; 一&#xff1a;效果演示 二&#xff1a;实现思路 三&#xff1a;代码实现 widget.h widget.cpp main.cpp 一&#xff1a;效果演示 效果图◕‿◕✌✌✌ 代码下载 二&#xff1a;实现思路 通过按键控制蛇的移动&#xff0c;每吃一个商品蛇身就会加长…

Git入门

本文主要介绍Git的入门知识。首先讲述版本控制工具的一些背景&#xff0c; 然后介绍如何在你自己的系统上安装.配置和运行Git。学完本文,你将明白Git是怎么来的、为什么需要Git,并掌握使用Git的基础知识。 一、版本控制 什么是“版本控制”&#xff0c;为什么需要它?版本控制是…

有趣的数学 数学建模入门二 一些理论基础

一、什么是数学建模? 现实世界中混乱的问题可以用数学来解决&#xff0c;从而产生一系列可能的解决方案来帮助指导决策。大多数人对数学建模的概念感到不舒服&#xff0c;因为它是如此开放。如此多的未知信息似乎令人望而却步。哪些因素最相关&#xff1f;但正是现实世界问题的…

Redis持久化之RDB解读

目录 什么是RDB 配置位置参数解读 如何使用 自动触发 手动触发 save bgsave RDBRDB持久化文件的恢复 正常恢复 恢复失败处理方法 RDB优势 RDB 缺点 redis是一个内存数据库,当redis服务器重启,获取电脑重启,数据会丢失,我们可以将redis内存中的数据持久化保存到硬盘…

解决政务审计大数据传输难题!镭速传输为政务行业提供解决方案

政务行业是国家治理的重要组成部分&#xff0c;涉及到国家安全、社会稳定、民生福祉等方面。随着信息技术的快速发展和革新&#xff0c;政务信息化也迎来了新一轮的升级浪潮。国家相继出台了《国家信息化发展战略纲要》《“十三五”国家信息化规划》《“十四五”推进国家政务信…

深度强化学习。介绍。深度 Q 网络 (DQN) 算法

马库斯布赫霍尔茨 一. 引言 深度强化学习的起源是纯粹的强化学习&#xff0c;其中问题通常被框定为马尔可夫决策过程&#xff08;MDP&#xff09;。MDP 由一组状态 S 和操作 A 组成。状态之间的转换使用转移概率 P、奖励 R 和贴现因子 gamma 执行。概率转换P&#xff08;系统动…

C#与西门子PLC1500的ModbusTcp服务器通信3--搭建ModbusTcp服务器

1、打开仿真工具&#xff0c;创建PLC&#xff0c;注意创建完成后不要关闭 注意&#xff0c;这个IP地址必须与西门子虚拟网卡的IP地址及虚拟机的网卡IP地址同一网段 2、打开博途V15&#xff0c;创建项目&#xff0c;命名为Lan项目 3、添加1500系列CPU1513 4、设置设置IP地址及属…

【Terraform学习】使用 Terraform 托管 S3 静态网站(Terraform-AWS最佳实战学习)

使用 Terraform 托管 S3 静态网站 实验步骤 前提条件 安装 Terraform&#xff1a; 地址 下载仓库代码模版 本实验代码位于 task_s3 文件夹中。 变量文件 variables.tf 在上面的代码中&#xff0c;您将声明&#xff0c;aws_access_key&#xff0c;aws_secret_key和区域变量…

研磨设计模式day11代理模式

目录 场景 代码实现 ​编辑 解析 定义 代理模式调用示意图 代理模式的特点 本质 ​编辑何时选用 场景 我有一个订单类&#xff0c;包含订单数、用户名和商品名&#xff0c;有一个订单接口包含了对订单类的getter和setter 现在有一个需求&#xff0c;a创建的订单只…

PDFPrinting.Net Crack

PDFPrinting.Net Crack 它能够轻松灵活地预测完美的打印结果以及用户文件的示例性显示。在.NET的PDF打印中&#xff0c;可以快速浏览最关键的元素。如果用户需要获得更详细的概述&#xff0c;那么他可以查看快速入门手册&#xff0c;甚至现有文档的详细概述参考。 在这种情况下…

不能从真实机向VMware里直接拖文件怎么办

如果真实机的文件不能拖动到虚拟机里面有两种解决办法&#xff1a; 1.重启虚拟机 2.更新自己的vmtools工具&#xff0c;因为这个操作是由他来完成的。 在虚拟机-------更新vmtools里面

数仓--------简单了解

作者前言 &#x1f382; ✨✨✨✨✨✨&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f367;&#x1f382; ​&#x1f382; 作者介绍&#xff1a; &#x1f382;&#x1f382; &#x1f382; &#x1f389;&#x1f389;&#x1f389…

Leetcode-每日一题【剑指 Offer 37. 序列化二叉树】

题目 请实现两个函数&#xff0c;分别用来序列化和反序列化二叉树。 你需要设计一个算法来实现二叉树的序列化与反序列化。这里不限定你的序列 / 反序列化算法执行逻辑&#xff0c;你只需要保证一个二叉树可以被序列化为一个字符串并且将这个字符串反序列化为原始的树结构。 …

Hadoop学习一(初识大数据)

目录 一 什么是大数据&#xff1f; 二 大数据特征 三 分布式计算 四 Hadoop是什么? 五 Hadoop发展及版本 六 为什么要使用Hadoop 七 Hadoop vs. RDBMS 八 Hadoop生态圈 九 Hadoop架构 一 什么是大数据&#xff1f; 大数据是指无法在一定时间内用常规软件工具对其内…

SpringBoot案例-配置文件-yml配置文件

配置格式 SpringBoot提供了多种属性配置方式 application.propertiesapplication.ymlapplication.yaml常见配置文件格式对比 XML&#xff08;臃肿&#xff09; <configuration><database><host>localhost</host><port>3306</port><use…

【springboot】WebScoket双向通信:

文章目录 一、介绍&#xff1a;二、案例&#xff1a;三、使用&#xff1a;【1】导入WebSocket的maven坐标【2】导入WebSocket服务端组件WebSocketServer&#xff0c;用于和客户端通信【3】导入配置类WebSocketConfiguration&#xff0c;注册WebSocket的服务端组件【4】导入定时…