Java8 Stream集合的筛选、归约、分组、聚合详解+案例

文章目录

  • 1 Stream概述
  • 2 Stream的创建
  • 3 Stream的使用
    • 案例使用的员工类
    • 3.1 遍历/匹配(foreach/find/match)
    • 3.2 筛选(filter)
    • 3.3 聚合(max/min/count)
    • 3.4 映射(map/flatMap)
    • 3.5 归约(reduce)
    • 3.6 收集(collect)
      • 3.6.1 归集(toList/toSet/toMap)
      • 3.6.2 统计(count/averaging)
      • 3.6.3 分组(partitioningBy/groupingBy)
      • 3.6.4 接合(joining)
      • 3.6.5 归约(reducing)
    • 3.7 排序(sorted)
    • 3.8 提取/组合

在这里插入图片描述

先贴上几个案例,水平高超的同学可以挑战一下:

  1. 从员工集合中筛选出salary大于8000的员工,并放置到新的集合里。
  2. 统计员工的最高薪资、平均薪资、薪资之和。
  3. 将员工按薪资从高到低排序,同样薪资者年龄小者在前。
  4. 将员工按性别分类,将员工按性别和地区分类,将员工按薪资是否高于8000分为两部分。

用传统的迭代处理也不是很难,但代码就显得冗余了,跟Stream相比高下立判。

1 Stream概述

Java 8 是一个非常成功的版本,这个版本新增的Stream,配合同版本出现的 Lambda ,给我们操作集合(Collection)提供了极大的便利。

那么什么是Stream

Stream将要处理的元素集合看作一种流,在流的过程中,借助Stream API对流中的元素进行操作,比如:筛选、排序、聚合等。

Stream可以由数组或集合创建,对流的操作分为两种:

  1. 中间操作,每次返回一个新的流,可以有多个。
  2. 终端操作,每个流只能进行一次终端操作,终端操作结束后流无法再次使用。终端操作会产生一个新的集合或值。

另外,Stream有几个特性:

  1. stream不存储数据,而是按照特定的规则对数据进行计算,一般会输出结果。
  2. stream不会改变数据源,通常情况下会产生一个新的集合或一个值。
  3. stream具有延迟执行特性,只有调用终端操作时,中间操作才会执行。

2 Stream的创建

Stream可以通过集合数组创建。

1、通过 java.util.Collection.stream() 方法用集合创建流

List<String> list = Arrays.asList("a", "b", "c");
// 创建一个顺序流
Stream<String> stream = list.stream();
// 创建一个并行流
Stream<String> parallelStream = list.parallelStream();

2、使用java.util.Arrays.stream(T[] array)方法用数组创建流

int[] array={1,3,5,6,8};
IntStream stream = Arrays.stream(array);

3、使用Stream的静态方法:of()、iterate()、generate()

Stream<Integer> stream = Stream.of(1, 2, 3, 4, 5, 6);Stream<Integer> stream2 = Stream.iterate(0, (x) -> x + 3).limit(4);
stream2.forEach(System.out::println);Stream<Double> stream3 = Stream.generate(Math::random).limit(3);
stream3.forEach(System.out::println);

输出结果:

0 3 6 9
0.6796156909271994
0.1914314208854283
0.8116932592396652

streamparallelStream的简单区分: stream是顺序流,由主线程按顺序对流执行操作,而parallelStream是并行流,内部以多线程并行执行的方式对流进行操作,但前提是流中的数据处理没有顺序要求。例如筛选集合中的奇数,两者的处理不同之处:
在这里插入图片描述
如果流中的数据量足够大,并行流可以加快处速度。

除了直接创建并行流,还可以通过parallel()把顺序流转换成并行流:

Optional<Integer> findFirst = list.stream().parallel().filter(x->x>6).findFirst();

3 Stream的使用

在使用stream之前,先理解一个概念:Optional

Optional类是一个可以为null的容器对象。如果值存在则isPresent()方法会返回true,调用get()方法会返回该对象。
更详细说明请见:菜鸟教程Java 8 Optional类

接下来,大批代码向你袭来!我将用20个案例将Stream的使用整得明明白白,只要跟着敲一遍代码,就能很好地掌握。
在这里插入图片描述

案例使用的员工类

这是后面案例中使用的员工类:

List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, "male", "New York"));
personList.add(new Person("Jack", 7000, "male", "Washington"));
personList.add(new Person("Lily", 7800, "female", "Washington"));
personList.add(new Person("Anni", 8200, "female", "New York"));
personList.add(new Person("Owen", 9500, "male", "New York"));
personList.add(new Person("Alisa", 7900, "female", "New York"));class Person {private String name;  // 姓名private int salary; // 薪资private int age; // 年龄private String sex; //性别private String area;  // 地区// 构造方法public Person(String name, int salary, int age,String sex,String area) {this.name = name;this.salary = salary;this.age = age;this.sex = sex;this.area = area;}// 省略了get和set,请自行添加}

3.1 遍历/匹配(foreach/find/match)

Stream也是支持类似集合的遍历和匹配元素的,只是Stream中的元素是以Optional类型存在的。Stream的遍历、匹配非常简单。
在这里插入图片描述

// import已省略,请自行添加,后面代码亦是public class StreamTest {public static void main(String[] args) {List<Integer> list = Arrays.asList(7, 6, 9, 3, 8, 2, 1);// 遍历输出符合条件的元素list.stream().filter(x -> x > 6).forEach(System.out::println);// 匹配第一个Optional<Integer> findFirst = list.stream().filter(x -> x > 6).findFirst();// 匹配任意(适用于并行流)Optional<Integer> findAny = list.parallelStream().filter(x -> x > 6).findAny();// 是否包含符合特定条件的元素boolean anyMatch = list.stream().anyMatch(x -> x > 6);System.out.println("匹配第一个值:" + findFirst.get());System.out.println("匹配任意一个值:" + findAny.get());System.out.println("是否存在大于6的值:" + anyMatch);}
}

3.2 筛选(filter)

筛选,是按照一定的规则校验流中的元素,将符合条件的元素提取到新的流中的操作。
在这里插入图片描述

案例一:筛选出Integer集合中大于7的元素,并打印出来

public class StreamTest {public static void main(String[] args) {List<Integer> list = Arrays.asList(6, 7, 3, 8, 1, 2, 9);Stream<Integer> stream = list.stream();stream.filter(x -> x > 7).forEach(System.out::println);}
}

预期结果:

8 9

案例二: 筛选员工中工资高于8000的人,并形成新的集合。 形成新集合依赖collect(收集),后文有详细介绍。

public class StreamTest {public static void main(String[] args) {List<Person> personList = new ArrayList<Person>();personList.add(new Person("Tom", 8900, 23, "male", "New York"));personList.add(new Person("Jack", 7000, 25, "male", "Washington"));personList.add(new Person("Lily", 7800, 21, "female", "Washington"));personList.add(new Person("Anni", 8200, 24, "female", "New York"));personList.add(new Person("Owen", 9500, 25, "male", "New York"));personList.add(new Person("Alisa", 7900, 26, "female", "New York"));List<String> fiterList = personList.stream().filter(x -> x.getSalary() > 8000).map(Person::getName).collect(Collectors.toList());System.out.print("薪资高于8000美元的员工:" + fiterList);}
}

运行结果:

薪资高于8000美元的员工:[Tom, Anni, Owen]

3.3 聚合(max/min/count)

maxmincount这些字眼你一定不陌生,没错,在mysql中我们常用它们进行数据统计。Java stream中也引入了这些概念和用法,极大地方便了我们对集合、数组的数据统计工作。
在这里插入图片描述

案例一:获取String集合中最长的元素。

public class StreamTest {public static void main(String[] args) {List<String> list = Arrays.asList("adnm", "admmt", "pot", "xbangd", "weoujgsd");Optional<String> max = list.stream().max(Comparator.comparing(String::length));System.out.println("最长的字符串:" + max.get());}
}

输出结果:

最长的字符串:weoujgsd

案例二:获取Integer集合中的最大值。

public class StreamTest {public static void main(String[] args) {List<Integer> list = Arrays.asList(7, 6, 9, 4, 11, 6);// 自然排序Optional<Integer> max = list.stream().max(Integer::compareTo);// 自定义排序(从大到小排序)Optional<Integer> max2 = list.stream().max((o1, o2) -> o2 - o1);System.out.println("自然排序的最大值:" + max.get());System.out.println("自定义排序的最大值:" + max2.get());}
}

输出结果:

自然排序的最大值:11
自定义排序的最大值:4

案例三:获取员工薪资最高的人。

public class StreamTest {public static void main(String[] args) {List<Person> personList = new ArrayList<Person>();personList.add(new Person("Tom", 8900, 23, "male", "New York"));personList.add(new Person("Jack", 7000, 25, "male", "Washington"));personList.add(new Person("Lily", 7800, 21, "female", "Washington"));personList.add(new Person("Anni", 8200, 24, "female", "New York"));personList.add(new Person("Owen", 9500, 25, "male", "New York"));personList.add(new Person("Alisa", 7900, 26, "female", "New York"));Optional<Person> max = personList.stream().max(Comparator.comparingInt(Person::getSalary));System.out.println("员工薪资最大值:" + max.get().getSalary());}
}

输出结果:

员工薪资最大值:9500

案例四:计算Integer集合中大于6的元素的个数。

import java.util.Arrays;
import java.util.List;public class StreamTest {public static void main(String[] args) {List<Integer> list = Arrays.asList(7, 6, 4, 8, 2, 11, 9);long count = list.stream().filter(x -> x > 6).count();System.out.println("list中大于6的元素个数:" + count);}
}

输出结果:

list中大于6的元素个数:4

3.4 映射(map/flatMap)

映射,可以将一个流的元素按照一定的映射规则映射到另一个流中。分为mapflatMap

  • map:接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。
  • flatMap:接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。

在这里插入图片描述
在这里插入图片描述
案例一:英文字符串数组的元素全部改为大写。整数数组每个元素+3。

public class StreamTest {public static void main(String[] args) {String[] strArr = { "abcd", "bcdd", "defde", "fTr" };List<String> strList = Arrays.stream(strArr).map(String::toUpperCase).collect(Collectors.toList());List<Integer> intList = Arrays.asList(1, 3, 5, 7, 9, 11);List<Integer> intListNew = intList.stream().map(x -> x + 3).collect(Collectors.toList());System.out.println("每个元素大写:" + strList);System.out.println("每个元素+3:" + intListNew);}
}

输出结果:

每个元素大写:[ABCD, BCDD, DEFDE, FTR]
每个元素+3:[4, 6, 8, 10, 12, 14]

案例二:将员工的薪资全部增加1000。

public class StreamTest {public static void main(String[] args) {List<Person> personList = new ArrayList<Person>();personList.add(new Person("Tom", 8900, 23, "male", "New York"));personList.add(new Person("Jack", 7000, 25, "male", "Washington"));personList.add(new Person("Lily", 7800, 21, "female", "Washington"));personList.add(new Person("Anni", 8200, 24, "female", "New York"));personList.add(new Person("Owen", 9500, 25, "male", "New York"));personList.add(new Person("Alisa", 7900, 26, "female", "New York"));// 不改变原来员工集合的方式List<Person> personListNew = personList.stream().map(person -> {Person personNew = new Person(person.getName(), 0, 0, null, null);personNew.setSalary(person.getSalary() + 10000);return personNew;}).collect(Collectors.toList());System.out.println("一次改动前:" + personList.get(0).getName() + "-->" + personList.get(0).getSalary());System.out.println("一次改动后:" + personListNew.get(0).getName() + "-->" + personListNew.get(0).getSalary());// 改变原来员工集合的方式List<Person> personListNew2 = personList.stream().map(person -> {person.setSalary(person.getSalary() + 10000);return person;}).collect(Collectors.toList());System.out.println("二次改动前:" + personList.get(0).getName() + "-->" + personListNew.get(0).getSalary());System.out.println("二次改动后:" + personListNew2.get(0).getName() + "-->" + personListNew.get(0).getSalary());}
}

输出结果:

一次改动前:Tom–>8900
一次改动后:Tom–>18900
二次改动前:Tom–>18900
二次改动后:Tom–>18900

案例三:将两个字符数组合并成一个新的字符数组。

public class StreamTest {public static void main(String[] args) {List<String> list = Arrays.asList("m,k,l,a", "1,3,5,7");List<String> listNew = list.stream().flatMap(s -> {// 将每个元素转换成一个streamString[] split = s.split(",");Stream<String> s2 = Arrays.stream(split);return s2;}).collect(Collectors.toList());System.out.println("处理前的集合:" + list);System.out.println("处理后的集合:" + listNew);}
}

输出结果:

处理前的集合:[m-k-l-a, 1-3-5]
处理后的集合:[m, k, l, a, 1, 3, 5]

此外,map系列还有mapToInt、mapToLong、mapToDouble三个函数,它们以一个映射函数为入参,将流中每一个元素处理后生成一个新流。以mapToInt为例,看两个示例:

public static void main(String[] args)  {// 输出字符串集合中每个字符串的长度List<String> stringList = Arrays.asList("mu", "CSDN", "hello","world", "quickly");stringList.stream().mapToInt(String::length).forEach(System.out::println);// 将int集合的每个元素增加1000List<Integer> integerList = Arrays.asList(4, 5, 2, 1, 6, 3);integerList.stream().mapToInt(x -> x + 1000).forEach(System.out::println);
}

mapToInt三个函数生成的新流,可以进行很多后续操作,比如求最大最小值、求和、求平均值:

public static void main(String[] args) {List<Double> doubleList = Arrays.asList(1.0, 2.0, 3.0, 4.0, 2.0);double average = doubleList.stream().mapToDouble(Number::doubleValue).average().getAsDouble();double sum = doubleList.stream().mapToDouble(Number::doubleValue).sum();double max = doubleList.stream().mapToDouble(Number::doubleValue).max().getAsDouble();System.out.println("平均值:" + average + ",总和:" + sum + ",最大值:" + max);
}

3.5 归约(reduce)

归约,也称缩减,顾名思义,是把一个流缩减成一个值,能实现对集合求和、求乘积和求最值操作。
在这里插入图片描述

案例一:求Integer集合的元素之和、乘积和最大值。

public class StreamTest {public static void main(String[] args) {List<Integer> list = Arrays.asList(1, 3, 2, 8, 11, 4);// 求和方式1Optional<Integer> sum = list.stream().reduce((x, y) -> x + y);// 求和方式2Optional<Integer> sum2 = list.stream().reduce(Integer::sum);// 求和方式3Integer sum3 = list.stream().reduce(0, Integer::sum);// 求乘积Optional<Integer> product = list.stream().reduce((x, y) -> x * y);// 求最大值方式1Optional<Integer> max = list.stream().reduce((x, y) -> x > y ? x : y);// 求最大值写法2Integer max2 = list.stream().reduce(1, Integer::max);System.out.println("list求和:" + sum.get() + "," + sum2.get() + "," + sum3);System.out.println("list求积:" + product.get());System.out.println("list求最大值:" + max.get() + "," + max2);}
}

输出结果:

list求和:29,29,29
list求积:2112
list求最大值:11,11

案例二:求所有员工的工资之和和最高工资。

public class StreamTest {public static void main(String[] args) {List<Person> personList = new ArrayList<Person>();personList.add(new Person("Tom", 8900, 23, "male", "New York"));personList.add(new Person("Jack", 7000, 25, "male", "Washington"));personList.add(new Person("Lily", 7800, 21, "female", "Washington"));personList.add(new Person("Anni", 8200, 24, "female", "New York"));personList.add(new Person("Owen", 9500, 25, "male", "New York"));personList.add(new Person("Alisa", 7900, 26, "female", "New York"));// 求工资之和方式1:Optional<Integer> sumSalary = personList.stream().map(Person::getSalary).reduce(Integer::sum);// 求工资之和方式2:Integer sumSalary2 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(),(sum1, sum2) -> sum1 + sum2);// 求工资之和方式3:Integer sumSalary3 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), Integer::sum);// 求最高工资方式1:Integer maxSalary = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),Integer::max);// 求最高工资方式2:Integer maxSalary2 = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),(max1, max2) -> max1 > max2 ? max1 : max2);// 求最高工资方式3:Integer maxSalary3 = personList.stream().map(Person::getSalary).reduce(Integer::max).get();System.out.println("工资之和:" + sumSalary.get() + "," + sumSalary2 + "," + sumSalary3);System.out.println("最高工资:" + maxSalary + "," + maxSalary2 + "," + maxSalary3);}
}

输出结果:

工资之和:49300,49300,49300
最高工资:9500,9500

3.6 收集(collect)

collect,收集,可以说是内容最繁多、功能最丰富的部分了。从字面上去理解,就是把一个流收集起来,最终可以是收集成一个值也可以收集成一个新的集合。

collect主要依赖java.util.stream.Collectors类内置的静态方法。

3.6.1 归集(toList/toSet/toMap)

因为流不存储数据,那么在流中的数据完成处理后,需要将流中的数据重新归集到新的集合里。toListtoSettoMap比较常用,另外还有toCollectiontoConcurrentMap等复杂一些的用法。

下面用一个案例演示toListtoSettoMap

public class StreamTest {public static void main(String[] args) {List<Integer> list = Arrays.asList(1, 6, 3, 4, 6, 7, 9, 6, 20);List<Integer> listNew = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toList());Set<Integer> set = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toSet());List<Person> personList = new ArrayList<Person>();personList.add(new Person("Tom", 8900, 23, "male", "New York"));personList.add(new Person("Jack", 7000, 25, "male", "Washington"));personList.add(new Person("Lily", 7800, 21, "female", "Washington"));personList.add(new Person("Anni", 8200, 24, "female", "New York"));Map<?, Person> map = personList.stream().filter(p -> p.getSalary() > 8000).collect(Collectors.toMap(Person::getName, p -> p));System.out.println("toList:" + listNew);System.out.println("toSet:" + set);System.out.println("toMap:" + map);}
}

运行结果:

toList:[6, 4, 6, 6, 20]
toSet:[4, 20, 6]
toMap:{Tom=mutest.Person@5fd0d5ae, Anni=mutest.Person@2d98a335}

3.6.2 统计(count/averaging)

Collectors提供了一系列用于数据统计的静态方法:

  • 计数:count
  • 平均值:averagingIntaveragingLongaveragingDouble
  • 最值:maxByminBy
  • 求和:summingIntsummingLongsummingDouble
  • 统计以上所有:summarizingIntsummarizingLongsummarizingDouble

案例:统计员工人数、平均工资、工资总额、最高工资。

public class StreamTest {public static void main(String[] args) {List<Person> personList = new ArrayList<Person>();personList.add(new Person("Tom", 8900, 23, "male", "New York"));personList.add(new Person("Jack", 7000, 25, "male", "Washington"));personList.add(new Person("Lily", 7800, 21, "female", "Washington"));// 求总数Long count = personList.stream().collect(Collectors.counting());// 求平均工资Double average = personList.stream().collect(Collectors.averagingDouble(Person::getSalary));// 求最高工资Optional<Integer> max = personList.stream().map(Person::getSalary).collect(Collectors.maxBy(Integer::compare));// 求工资之和Integer sum = personList.stream().collect(Collectors.summingInt(Person::getSalary));// 一次性统计所有信息DoubleSummaryStatistics collect = personList.stream().collect(Collectors.summarizingDouble(Person::getSalary));System.out.println("员工总数:" + count);System.out.println("员工平均工资:" + average);System.out.println("员工工资总和:" + sum);System.out.println("员工工资所有统计:" + collect);}
}

运行结果:

员工总数:3
员工平均工资:7900.0
员工工资总和:23700
员工工资所有统计:DoubleSummaryStatistics{count=3, sum=23700.000000,min=7000.000000, average=7900.000000, max=8900.000000}

3.6.3 分组(partitioningBy/groupingBy)

  • 分区:将stream按条件分为两个Map,比如员工按薪资是否高于8000分为两部分。
  • 分组:将集合分为多个Map,比如员工按性别分组。有单级分组和多级分组。

在这里插入图片描述

案例:将员工按薪资是否高于8000分为两部分;将员工按性别和地区分组

public class StreamTest {public static void main(String[] args) {List<Person> personList = new ArrayList<Person>();personList.add(new Person("Tom", 8900, "male", "New York"));personList.add(new Person("Jack", 7000, "male", "Washington"));personList.add(new Person("Lily", 7800, "female", "Washington"));personList.add(new Person("Anni", 8200, "female", "New York"));personList.add(new Person("Owen", 9500, "male", "New York"));personList.add(new Person("Alisa", 7900, "female", "New York"));// 将员工按薪资是否高于8000分组Map<Boolean, List<Person>> part = personList.stream().collect(Collectors.partitioningBy(x -> x.getSalary() > 8000));// 将员工按性别分组Map<String, List<Person>> group = personList.stream().collect(Collectors.groupingBy(Person::getSex));// 将员工先按性别分组,再按地区分组Map<String, Map<String, List<Person>>> group2 = personList.stream().collect(Collectors.groupingBy(Person::getSex, Collectors.groupingBy(Person::getArea)));System.out.println("员工按薪资是否大于8000分组情况:" + part);System.out.println("员工按性别分组情况:" + group);System.out.println("员工按性别、地区:" + group2);}
}

输出结果:

员工按薪资是否大于8000分组情况:{false=[mutest.Person@2d98a335, mutest.Person@16b98e56, mutest.Person@7ef20235], true=[mutest.Person@27d6c5e0, mutest.Person@4f3f5b24, mutest.Person@15aeb7ab]}
员工按性别分组情况:{female=[mutest.Person@16b98e56, mutest.Person@4f3f5b24, mutest.Person@7ef20235], male=[mutest.Person@27d6c5e0, mutest.Person@2d98a335, mutest.Person@15aeb7ab]}
员工按性别、地区:{female={New York=[mutest.Person@4f3f5b24, mutest.Person@7ef20235], Washington=[mutest.Person@16b98e56]}, male={New York=[mutest.Person@27d6c5e0, mutest.Person@15aeb7ab], Washington=[mutest.Person@2d98a335]}}

3.6.4 接合(joining)

joining可以将stream中的元素用特定的连接符(没有的话,则直接连接)连接成一个字符串。

public class StreamTest {public static void main(String[] args) {List<Person> personList = new ArrayList<Person>();personList.add(new Person("Tom", 8900, 23, "male", "New York"));personList.add(new Person("Jack", 7000, 25, "male", "Washington"));personList.add(new Person("Lily", 7800, 21, "female", "Washington"));String names = personList.stream().map(p -> p.getName()).collect(Collectors.joining(","));System.out.println("所有员工的姓名:" + names);List<String> list = Arrays.asList("A", "B", "C");String string = list.stream().collect(Collectors.joining("-"));System.out.println("拼接后的字符串:" + string);}
}

运行结果:

所有员工的姓名:Tom,Jack,Lily
拼接后的字符串:A-B-C

3.6.5 归约(reducing)

Collectors类提供的reducing方法,相比于stream本身的reduce方法,增加了对自定义归约的支持。

public class StreamTest {public static void main(String[] args) {List<Person> personList = new ArrayList<Person>();personList.add(new Person("Tom", 8900, 23, "male", "New York"));personList.add(new Person("Jack", 7000, 25, "male", "Washington"));personList.add(new Person("Lily", 7800, 21, "female", "Washington"));// 每个员工减去起征点后的薪资之和(这个例子并不严谨,但一时没想到好的例子)Integer sum = personList.stream().collect(Collectors.reducing(0, Person::getSalary, (i, j) -> (i + j - 5000)));System.out.println("员工扣税薪资总和:" + sum);// stream的reduceOptional<Integer> sum2 = personList.stream().map(Person::getSalary).reduce(Integer::sum);System.out.println("员工薪资总和:" + sum2.get());}
}

运行结果:

员工扣税薪资总和:8700
员工薪资总和:23700

3.7 排序(sorted)

sorted,中间操作。有两种排序:

  • sorted():自然排序,流中元素需实现Comparable接口
  • sorted(Comparator com):Comparator排序器自定义排序

案例:将员工按工资由高到低(工资一样则按年龄由大到小)排序

public class StreamTest {public static void main(String[] args) {List<Person> personList = new ArrayList<Person>();personList.add(new Person("Sherry", 9000, 24, "female", "New York"));personList.add(new Person("Tom", 8900, 22, "male", "Washington"));personList.add(new Person("Jack", 9000, 25, "male", "Washington"));personList.add(new Person("Lily", 8800, 26, "male", "New York"));personList.add(new Person("Alisa", 9000, 26, "female", "New York"));// 按工资升序排序(自然排序)List<String> newList = personList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName).collect(Collectors.toList());// 按工资倒序排序List<String> newList2 = personList.stream().sorted(Comparator.comparing(Person::getSalary).reversed()).map(Person::getName).collect(Collectors.toList());// 先按工资再按年龄升序排序List<String> newList3 = personList.stream().sorted(Comparator.comparing(Person::getSalary).thenComparing(Person::getAge)).map(Person::getName).collect(Collectors.toList());// 先按工资再按年龄自定义排序(降序)List<String> newList4 = personList.stream().sorted((p1, p2) -> {if (p1.getSalary() == p2.getSalary()) {return p2.getAge() - p1.getAge();} else {return p2.getSalary() - p1.getSalary();}}).map(Person::getName).collect(Collectors.toList());System.out.println("按工资升序排序:" + newList);System.out.println("按工资降序排序:" + newList2);System.out.println("先按工资再按年龄升序排序:" + newList3);System.out.println("先按工资再按年龄自定义降序排序:" + newList4);}
}

运行结果:

按工资升序排序:[Lily, Tom, Sherry, Jack, Alisa]
按工资降序排序:[Sherry, Jack, Alisa, Tom, Lily]
先按工资再按年龄升序排序:[Lily, Tom, Sherry, Jack, Alisa]
先按工资再按年龄自定义降序排序:[Alisa, Jack, Sherry, Tom, Lily]

3.8 提取/组合

流也可以进行合并、去重、限制、跳过等操作。
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

public class StreamTest {public static void main(String[] args) {String[] arr1 = { "a", "b", "c", "d" };String[] arr2 = { "d", "e", "f", "g" };Stream<String> stream1 = Stream.of(arr1);Stream<String> stream2 = Stream.of(arr2);// concat:合并两个流 distinct:去重List<String> newList = Stream.concat(stream1, stream2).distinct().collect(Collectors.toList());// limit:限制从流中获得前n个数据List<Integer> collect = Stream.iterate(1, x -> x + 2).limit(10).collect(Collectors.toList());// skip:跳过前n个数据List<Integer> collect2 = Stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(Collectors.toList());System.out.println("流合并:" + newList);System.out.println("limit:" + collect);System.out.println("skip:" + collect2);}
}

运行结果:

流合并:[a, b, c, d, e, f, g]
limit:[1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
skip:[3, 5, 7, 9, 11]

好,以上就是全部内容,能坚持看到这里,你一定很有收获,那么动一动拿offer的小手,点个赞再走吧,听说这么做的人2021年都交了好运!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/554642.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

liunx宝塔配置https_宝塔面板安装教程

宝塔面板安装教程原创 计科青年 今天首先登陆阿里云官网登陆你买的阿里云服务器打开服务器控制台&#xff0c;点击购买的服务器&#xff0c;点击实例&#xff0c;就可以看见自己的公网IP。1.下载Xshell6远程连接软件&#xff0c;打开软件点击文件新建这里推荐大家使用Xshell6进…

java用户角色权限管理 只显示姓_快递物流管理系统SSM,JQUERYEASYUI,MYSQL

快递物流管理系统(SSM,JQUERY-EASYUI,MYSQL)(毕业论文27564字,共78页,程序代码,MySQL数据库) 全套项目下载地址: http://woc.xin/WQBgtE【运行环境】 Eclipse, IDEA JDK1.7(JDK1.8) Tomcat7(Tomcat8)【技术栈】 JAVA, JSP, SSM, JQUERY, JQUERY EASYUI, MYSQL, HTML, CSS, JAVA…

判刑后再上诉会改判吗_近视眼手术后还会再近视反弹吗?有哪些后遗症,温州眼科专家告诉你...

经过几代的更新发展&#xff0c;近视眼手术的技术已相当成熟。激光近视手术受到越来越多近视患者的青睐&#xff0c;飞秒激光近视手术俨然成为目前矫正近视的新潮流。很多人以为&#xff0c;有了近视手术后便不需要注意近视的防控。轻松摘镜的背后&#xff0c;是彻夜狂欢&#…

dev c++调试怎么看变量的值_利用GDB调试 MSQL

原创 张政俊 老叶茶馆来自专辑MySQL修行作者&#xff1a;张政俊就职于中欧基金&#xff0c;知数堂粉丝&#xff0c;数据库爱好者&#xff0c;熟悉RDBMS、nosql、new sql等各类数据库。啃完Oreilly的《高性能mysql》、姜老师的《MySQL技术内幕》&#xff0c;再加上个2,3年的实战…

案例 自动办公_办公自动化案例教程(双色)(含微课)

办公自动化案例教程(双色)(含微课)ISBN:978-7-5165-1852-6作者&#xff1a;贺鑫 彭卫华 李胜华定价&#xff1a;48.00元出版社&#xff1a;航空工业出版社适用层次&#xff1a;通用出版日期&#xff1a;2020-05-01项目一 使用Word制作常用公文项目描述学习要点任务一 制作行政…

柱形图无数据可选中_Excel – 如何制作出上下层排列的柱形图?

如何将同一个数据表中的不同数据列排列成上下两层柱形图&#xff1f;案例&#xff1a;将下图 1 的数据表制作成柱形图&#xff0c;要求将销量和利润的柱形分成两个图表上下排列。效果如下图 2 所示。解决方案&#xff1a;1. 选中整个数据表区域 --> 选择菜单栏的“插入”--&…

html画布360图案填充_在Photoshop中创建带有图案的抽象设计

效果图知识点&#xff1a;应用选区工具结合图层混合模式和混合选项&#xff0c;创造出唯美的抽象类画册 效果设计本身由一系列同心圆组成&#xff0c;每组的大小各不相同。每个圆都有6个核心色板的底色&#xff0c;然后渐变和图案填充会增加细节和深度。我们需要创建图案填充。…

emd实现信息隐藏_EMD算法原理与实现

欢迎关注我们&#xff0c;选择加"星标"或“置顶”更多技术&#xff0c;第一时间送达SSVEP信号中含有自发脑电和大量外界干扰信号&#xff0c;属于典型的非线性非平稳信号。传统的滤波方法通常不满足对非线性非平稳分析的条件&#xff0c;1998年黄鄂提出希尔伯特黄变换…

转为yaml python_python 如何使用HttpRunner做接口自动化测试

作者&#xff1a;星安果 来源&#xff1a;AirPython1. 前言原始测试金子塔包含 3 层&#xff0c;分别是&#xff1a;UI 自动化测试、接口服务测试、单元测试其中&#xff0c;单元测试是对软件的最小可测试单元进行检查和验证&#xff0c;也是产生效率最大的一项测试接口服务测试…

eq值 推荐算法_利用 SVD 实现协同过滤推荐算法

奇异值分解(Singular Value Decomposition&#xff0c;以下简称SVD)是在机器学习领域广泛应用的算法&#xff0c;它不光可以用于降维算法中的特征分解&#xff0c;还可以用于推荐系统&#xff0c;以及自然语言处理等领域。优点&#xff1a;简化数据&#xff0c;去除噪声&#x…

打开数据库_打开这份指南,数据库运维也能优雅、简单!

对于常规数据库的运维监控来说&#xff0c;如何能够快速简洁的发现问题&#xff0c;直达问题本质并解决常见问题&#xff0c;是 Bethune 的安身立命之本。简约&#xff0c;优雅&#xff0c;专业&#xff0c;直抵本心&#xff0c;这是用户对 Bethune 的评价。Bethune X 功能强大…

mysql集群_MySQL集群

MySQL集群搭建之主从复制: 主从复制原理: 从库生成两个线程,一个I/O线程,一个SQL线程; i/o线程去请求主库 的binlog,并将得到的binlog日志写到relay log(中继日志) 文件中; 主库会生成一个 log dump 线程,用来给从库 i/o线程传binlog; SQL 线程,会读取relay log文件中…

mysql 数据库操作类_【数据库操作类】10个php操作数据库类下载

数据库(Database)操作是在开发过程中重要的组成部分&#xff0c;熟练掌握数据库的操作是开发人员必备的武器。PHP中文网为大家提供了各种封装好的php数据库操作类库&#xff0c;供大家下载和学习。相关mysql视频教程推荐&#xff1a;《mysql教程》php各种数据库操作类库下载PDO…

程序员需要知道的职场真相

关于面试谈薪&#xff1a; 1. 你值多少钱&#xff0c;不是由老板决定的&#xff0c;也不是由你自己的能力决定&#xff0c;而是由市场决定的。这个技术就你一个会&#xff0c;你说多少钱就多少钱。这个技术 100W人会&#xff0c;不好意思&#xff0c;肯定是公司在一定的时间内&…

QQ浏览器怎么同步通讯录?QQ浏览器同步通讯录的方法

QQ浏览器怎么同步通讯录&#xff1f;QQ浏览器同步通讯录的方法 qq浏览器是一款非常好用的手机服务软件&#xff0c;有很多用户都会使用这款软件作为自己的主流浏览器&#xff0c;相信已经有很多用户使用过这款软件了&#xff0c;这款软件的搜索功能非常的强大&#xff0c;有很多…

win10如何删除注册表残留文件

win10如何删除注册表残留文件?下面一起来看看如何操作吧。 1、按下“winr”打开运行&#xff0c;输入“regedit”&#xff0c;点击“确定”; 2、依次展开“HKEY_LOCAL_MACHINESOFTWAREMicrosoftwindowsCurrentVersionUninstall”; 3、在该子键下根据已卸载的应用程序软件图标…

jmeter连接mysql数据库驱动_十八、JMeter实战-JDBC连接MySQL数据库

前言连接数据库进行测试在工作中会比较常用&#xff0c;首先可以读取数据库的数据进行参数化、关联等&#xff0c;批量添加测试数据以及清理数据&#xff0c;还可以直接对SQL语句进行压测。一、基本介绍1. 首先第一步要导入mysql驱动包&#xff0c;放到jmeter/lib目录下&#x…

下如何查看mysql表单_Navicat 教程:如何进行表单查看

Navicat 表单查看方便表单查看、更新或删除数据&#xff0c;显示当前的记录&#xff1a;栏位名及其值。表单的弹出菜单包括这些功能&#xff1a;设置栏位值为 Null 或空白字符串、使用当前栏位值为筛选、设置表单查看格式及更多&#xff0c;导览栏可以快速切换记录、插入、更新…

怎么禁止开机启动nvidia

1、单击开始菜单&#xff0c;选择运行&#xff0c;打开运行后输入services.msc 确定。 2、打开本地服务后&#xff0c;在列表中找到NVIDIA Display Driver Service服务。 3、双击打开该服务&#xff0c;然后将NVIDIA Display Driver Service服务的启动类型设置为禁用&#x…

mysql insert 错误码_利用 MySQL 自身错误诊断区域-爱可生

原标题&#xff1a;利用 MySQL 自身错误诊断区域-爱可生背景本篇文章来源于今天客户问的一个问题。问题大概意思是&#xff1a;我正在从 Oracle 迁移到 MySQL&#xff0c;数据已经转换为单纯的 INSERT 语句。由于语句很多&#xff0c;每次导入的时候不知道怎么定位到错误的语句…