基于YOLOV8模型的课堂场景下人脸目标检测系统(PyTorch+Pyside6+YOLOv8模型)

摘要:基于YOLOV8模型的课堂场景下人脸目标检测系统可用于日常生活中检测与定位课堂场景下人脸,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算法训练数据集,使用Pysdie6库来搭建前端页面展示系统。另外本系统支持的功能还包括训练模型的导入、初始化;检测置信分与检测后处理IOU阈值的调节;图像的上传、检测、可视化结果展示与检测结果导出;视频的上传、检测、可视化结果展示与检测结果导出;摄像头的图像输入、检测与可视化结果展示;已检测目标个数与列表、位置信息;前向推理用时等功能。本博文提供了完整的Python代码与安装和使用教程,适合新入门的朋友参考,部分重要代码部分都有注释,完整代码资源文件请转至文末的下载链接。
在这里插入图片描述

需要源码的朋友在后台私信博主获取下载链接

基本介绍

近年来,机器学习和深度学习取得了较大的发展,深度学习方法在检测精度和速度方面与传统方法相比表现出更良好的性能。YOLOv8 是 Ultralytics 公司继 YOLOv5 算法之后开发的下一代算法模型,目前支持图像分类、物体检测和实例分割任务。YOLOv8 是一个 SOTA模型,它建立在之前YOLO 系列模型的成功基础上,并引入了新的功能和改进,以进一步提升性能和灵活性。具体创新包括:一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行。因此本博文利用YOLOv8目标检测算法实现一种基于YOLOV8模型的课堂场景下人脸目标检测系统,再使用Pyside6库搭建出界面系统,完成目标检测页面的开发。本博主之前发布过关于YOLOv5算法的相关模型与界面,需要的朋友可从我之前发布的博客查看。另外本博主计划将YOLOv5、YOLOv6、YOLOv7和YOLOv8一起联合发布,需要的朋友可以持续关注,欢迎朋友们关注收藏。

环境搭建

(1)打开项目目录,在搜索框内输入cmd打开终端
在这里插入图片描述

(2)新建一个虚拟环境(conda create -n yolo8 python=3.8)
在这里插入图片描述

(3)激活环境,安装ultralytics库(yolov8官方库),pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(4)注意到这种安装方式只会安装cpu版torch,如需安装gpu版torch,需在安装包之前先安装torch:pip install torch2.0.1+cu118 torchvision0.15.2+cu118 -f https://download.pytorch.org/whl/torch_stable.html;再,pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
在这里插入图片描述

(5)安装图形化界面库pyside6:pip install pyside6 -i https://pypi.tuna.tsinghua.edu.cn/simple

界面及功能展示

下面给出本博文设计的软件界面,整体界面简洁大方,大体功能包括训练模型的导入、初始化;置信分与IOU阈值的调节、图像上传、检测、可视化结果展示、结果导出与结束检测;视频的上传、检测、可视化结果展示、结果导出与结束检测;已检测目标列表、位置信息;前向推理用时。初始界面如下图:
在这里插入图片描述

模型选择与初始化

用户可以点击模型权重选择按钮上传训练好的模型权重,训练权重格式可为.pt、.onnx以及engine等,之后再点击模型权重初始化按钮可实现已选择模型初始化的配置。
在这里插入图片描述

置信分与IOU的改变

在Confidence或IOU下方的输入框中改变值即可同步改变滑动条的进度,同时改变滑动条的进度值也可同步改变输入框的值;Confidence或IOU值的改变将同步到模型里的配置,将改变检测置信度阈值与IOU阈值。

图像选择、检测与导出

用户可以点击选择图像按钮上传单张图像进行检测与识别,上传成功后系统界面会同步显示输入图像。
在这里插入图片描述

再点击图像检测按钮可完成输入图像的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

再点击检测结果展示按钮可在系统左下方显示输入图像检测的结果,系统将显示识别出图片中的目标的类别、位置和置信度信息。
在这里插入图片描述

点击图像检测结果导出按钮即可导出检测后的图像,在保存栏里输入保存的图片名称及后缀即可实现检测结果图像的保存。
在这里插入图片描述

点击结束图像检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

视频选择、检测与导出

用户点击选择视频按钮上传视频进行检测与识别,之后系统会将视频的第一帧输入到系统界面中显示。
在这里插入图片描述

再点击视频检测按钮可完成输入视频的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击暂停视频检测按钮即可实现输入视频的暂停,此时按钮变为继续视频检测,输入视频帧与帧检测结果会保留在系统界面,可点击下拉目标框选择已检测目标的坐标位置信息,再点击继续视频检测按钮即可实现输入视频的检测。
点击视频检测结果导出按钮即可导出检测后的视频,在保存栏里输入保存的图片名称及后缀即可实现检测结果视频的保存。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

摄像头打开、检测与结束

用户可以点击打开摄像头按钮来打开摄像头设备进行检测与识别,之后系统会将摄像头图像输入到系统界面中显示。
在这里插入图片描述

再点击摄像头检测按钮可完成输入摄像头的目标检测功能,之后系统会在用时一栏输出检测用时,在目标数量一栏输出已检测到的目标数量,在下拉框可选择已检测目标,对应于目标位置(即xmin、ymin、xmax以及ymax)标签值的改变。
在这里插入图片描述

点击结束视频检测按钮即可完成系统界面的刷新,将所有输出信息清空,之后再点击选择图像或选择视频按钮来上传图像或视频,或者点击打开摄像头按钮来开启摄像头。

算法原理介绍

本系统采用了基于深度学习的单阶段目标检测算法YOLOv8,相较于之前的YOLO系列目标检测算法,YOLOv8目标检测算法具有如下的几点优势:(1)更友好的安装/运行方式;(2)速度更快、准确率更高;(3)新的backbone,将YOLOv5中的C3更换为C2F;(4)YOLO系列第一次尝试使用anchor-free;(5)新的损失函数。YOLOv8模型的整体结构如下图所示,原图见mmyolo的官方仓库。
在这里插入图片描述

YOLOv8与YOLOv5模型最明显的差异是使用C2F模块替换了原来的C3模块,两个模块的结构如下图所示,原图见mmyolo的官方仓库。
在这里插入图片描述

另外Head 部分变化最大,从原先的耦合头变成了解耦头,并且从 YOLOv5 的 Anchor-Based 变成了 Anchor-Free。其结构对比如下图所示。
在这里插入图片描述

数据集介绍

本系统使用的课堂人脸数据集手动标注了人脸这一个类别,数据集总计9072张图片。该数据集中类别都有大量的旋转和不同的光照条件,有助于训练出更加鲁棒的检测模型。本文实验的课堂人脸检测识别数据集包含训练集7203张图片,验证集1869张图片,选取部分数据部分样本数据集如下图所示。由于YOLOv5算法对输入图片大小有限制,需要将所有图片调整为相同的大小。为了在不影响检测精度的情况下尽可能减小图片的失真,我们将所有图片调整为640x640的大小,并保持原有的宽高比例。此外,为了增强模型的泛化能力和鲁棒性,我们还使用了数据增强技术,包括随机旋转、缩放、裁剪和颜色变换等,以扩充数据集并减少过拟合风险。
在这里插入图片描述

关键代码解析

在训练阶段,我们使用了预训练模型作为初始模型进行训练,然后通过多次迭代优化网络参数,以达到更好的检测性能。在训练过程中,我们采用了学习率衰减和数据增强等技术,以增强模型的泛化能力和鲁棒性。一个简单的单卡模型训练命令如下。
在这里插入图片描述

在训练时也可指定更多的参数,大部分重要的参数如下所示:
在这里插入图片描述

在测试阶段,我们使用了训练好的模型来对新的图片和视频进行检测。通过设置阈值,将置信度低于阈值的检测框过滤掉,最终得到检测结果。同时,我们还可以将检测结果保存为图片或视频格式,以便进行后续分析和应用。本系统基于YOLOv8算法,使用PyTorch实现。代码中用到的主要库包括PyTorch、NumPy、OpenCV、Pyside6等。
在这里插入图片描述

Pyside6界面设计

PySide是一个Python的图形化界面(GUI)库,由C++版的Qt开发而来,在用法上基本与C++版没有特别大的差异。相对于其他Python GUI库来说,PySide开发较快,功能更完善,而且文档支持更好。在本博文中,我们使用Pyside6库创建一个图形化界面,为用户提供简单易用的交互界面,实现用户选择图片、视频进行目标检测。
我们使用Qt Designer设计图形界面,然后使用Pyside6将设计好的UI文件转换为Python代码。图形界面中包含多个UI控件,例如:标签、按钮、文本框、多选框等。通过Pyside6中的信号槽机制,可以使得UI控件与程序逻辑代码相互连接。

实验结果与分析

在实验结果与分析部分,我们使用精度和召回率等指标来评估模型的性能,还通过损失曲线和PR曲线来分析训练过程。在训练阶段,我们使用了前面介绍的数据集进行训练,使用了YOLOv8算法对数据集训练,总计训练了100个epochs。在训练过程中,我们使用tensorboard记录了模型在训练集和验证集上的损失曲线。从下图可以看出,随着训练次数的增加,模型的训练损失和验证损失都逐渐降低,说明模型不断地学习到更加精准的特征。在训练结束后,我们使用模型在数据集的验证集上进行了评估,得到了以下结果。
在这里插入图片描述

下图展示了我们训练的YOLOv8模型在验证集上的PR曲线,从图中可以看出,模型取得了较高的召回率和精确率,整体表现良好。
在这里插入图片描述

下图展示了本博文在使用YOLOv8模型对数据集进行训练时候的Mosaic数据增强图像。
在这里插入图片描述

综上,本博文训练得到的YOLOv8模型在数据集上表现良好,具有较高的检测精度和鲁棒性,可以在实际场景中应用。另外本博主对整个系统进行了详细测试,最终开发出一版流畅的高精度目标检测系统界面,就是本博文演示部分的展示,完整的UI界面、测试图片视频、代码文件等均已打包上传,感兴趣的朋友可以关注我私信获取。

其他基于深度学习的目标检测系统如西红柿、猫狗、山羊、野生目标、烟头、二维码、头盔、交警、野生动物、野外烟雾、人体摔倒识别、红外行人、家禽猪、苹果、推土机、蜜蜂、打电话、鸽子、足球、奶牛、人脸口罩、安全背心、烟雾检测系统等有需要的朋友关注我,从博主其他视频中获取下载链接。

完整项目目录如下所示:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/55425.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PHP自己的框架cookie()使用(完善篇七)

1、PHP自己的框架cookie() 2、cookie类&#xff08;CookieBase.php&#xff09; <?php class CookieBase {/*** 设置cookie*/public static function set($name, $value, $expire 3600, $path , $domain , $secure false, $httponly false) {setcookie($name, $valu…

字节律动之*你太美, emm 其实是个字符画雪花视频-哈哈哈-将视频转成一张张字符画图片

效果 整体效果 局部图片放大效果 视频转换后带雪花特效,凑合看吧, 视频地址 准备工作 安装FFmpeg 电脑上安装ffpeg处理视频并设置环境变量, windows可以参考FFmpeg的安装教程这篇博客安装 mac可以直接执行brew install ffmpeg安装 安装python依赖包 执行pip3 install -…

2023前端面试笔记 —— CSS3

系列文章目录 内容链接2023前端面试笔记HTML52023前端面试笔记CSS3 文章目录 系列文章目录前言一、CSS选择器的优先级二、通过 CSS 的哪些方式可以实现隐藏页面上的元素三、px、em、rem之间有什么区别&#xff1f;四、让元素水平居中的方法有哪些五、在 CSS 中有哪些定位方式六…

华为手机实用功能介绍

一、内置app介绍 分四块介绍&#xff0c;包括出门款、规划款、工作款和生活款。 出门款&#xff1a;红色框框部分&#xff0c;照镜子化妆/看天气 规划款&#xff1a;黄色框框部分&#xff0c;日程表/计划表/番茄时间/计时 工作款&#xff1a;蓝色框框部分&#xff0c;便笺/录…

基于android的学生公寓后勤系统/学生公寓管理系统APP

摘 要 随着网络科技的发展&#xff0c;移动智能终端逐渐走进人们的视线&#xff0c;相关应用越来越广泛&#xff0c;并在人们的日常生活中扮演着越来越重要的角色。因此&#xff0c;关键应用程序的开发成为影响移动智能终端普及的重要因素&#xff0c;设计并开发实用、方便的应…

快速排序笔记

一、quick_sort方法中如果 il,jr 会死循环的分析 1、示例代码 void quick_sort(int a[],int l,int r){if(l>r) return;int il,jr; //此处设置会导致死循环int x num[(lr)>>1];while(i<j){while(a[i] <x); //死循环的地方while(a[--j] >x);if(i<j) swap(a…

Docker consul的容器服务注册与发现

前言一、服务注册与发现二、consul 介绍三、consul 部署3.1 consul服务器3.1.1 建立 Consul 服务3.1.2 查看集群信息3.1.3 通过 http api 获取集群信息 3.2 registrator服务器3.2.1 安装 Gliderlabs/Registrator3.2.2 测试服务发现功能是否正常3.2.3 验证 http 和 nginx 服务是…

小研究 - JVM 的类装载机制

本文通过对一个类装载实例的分析&#xff0c;阐明了 Java虚拟机的类装载的代理机制和由此定义的命名空间&#xff0c;指出了类装载机制在容器/组件/抽象框架结构中的作用。 目录 1 引言 2 实例 3 分析 3.1 类装载的代理机制 3.2 Java的命名空间 3.3 解决问题 4 应…

VR智慧课堂 | 临床兽医学VR实验教学有哪些好处?

随着科技的不断发展&#xff0c;虚拟现实(VR)技术已经逐渐渗透到各个领域&#xff0c;为人们带来了前所未有的体验。在动物医学实验教学中&#xff0c;VR技术的应用也日益受到关注。本文将探讨临床兽医学VR实验教学的好处。 首先&#xff0c;VR技术能够提高动物医学实验的安全性…

江西萍乡能源石油化工阀门三维扫描3d测量抄数建模-CASAIM中科广电

长期以来&#xff0c;石油天然气、石油石化、发电和管道输送行业在环保、健康和安全保障方面一直承受着巨大的压力&#xff0c;他们必须确保相关规程在各项作业中得到全面贯彻。 阀门作为流体管道运输中的组成部分&#xff0c;其装配密封度是保证流体运输安全的重要一环&#…

数据结构初阶--排序

目录 一.排序的基本概念 1.1.什么是排序 1.2.排序算法的评价指标 1.3.排序的分类 二.插入排序 2.1.直接插入排序 2.2.希尔排序 三.选择排序 3.1.直接选择排序 3.2.堆排序 重建堆 建堆 排序 四.交换排序 4.1.冒泡排序 4.2.快速排序 快速排序的递归实现 法一&a…

查看windows当前占用的所有端口、根据ipt终止任务进程、OS、operatingSystem

文章目录 查询端口查询指定端口根据进程pid查询进程名称查看所有进程名称根据pid终止任务进程根据进程名称终止任务 查询端口 netstat -ano查询指定端口 netstat -ano | findstr "80"根据进程pid查询进程名称 tasklist | findstr "660"查看所有进程名称 ta…

0201hdfs集群部署-hadoop-大数据学习

文章目录 1 前言2 集群规划3 hadoop安装包上传与安装3.1 上传解压 4 hadoop配置5 从节点同步和环境变量配置6 创建用户7 集群启动8 问题集8.1 Invalid URI for NameNode address (check fs.defaultFS): file:/// has no authority. 结语 1 前言 下面我们配置下单namenode节点h…

arcgis:画一幅自己城市的shp地图

首先打开ArcGis10.6&#xff0c;点击带黄底的小加号&#xff0c;添加底图。 可以选择中国地图彩色版&#xff0c;然后双击&#xff0c;转动鼠标滑轮找到属于自己的城市。 点击-目录&#xff0c;在新建的文件夹里右击-新建-shapefile。 格式选择折线&#xff0c;先把主要河流道路…

JMeter性能测试(上)

一、基础简介 界面 打开方式 双击 jmeter.bat双击 ApacheJMeter.jsr命令行输入 java -jar ApacheJMeter.jar 目录 BIN 目录&#xff1a;存放可执行文件和配置文件 docs目录&#xff1a;api文档&#xff0c;用于开发扩展组件 printable-docs目录&#xff1a;用户帮助手册 li…

设计模式入门:解密优雅的代码构建

从本篇文章开始&#xff0c;我们将开启一个设计模式的系列文章&#xff0c;主要用来介绍常用的设计模式&#xff0c;使用场景和代码案例&#xff0c;对设计模式不熟悉的老铁可以关注一下&#xff0c;可以快速让你入门设计模式。 在软件开发的世界中&#xff0c;设计模式是一种…

NSSCTF——Web题目2

目录 一、[HNCTF 2022 Week1]2048 二、[HNCTF 2022 Week1]What is Web 三、[LitCTF 2023]1zjs 四、[NCTF 2018]签到题 五、[SWPUCTF 2021 新生赛]gift_F12 一、[HNCTF 2022 Week1]2048 知识点&#xff1a;源代码审计 解题思路&#xff1a; 1、打开控制台&#xff0c;查看…

C语言练习5(巩固提升)

C语言练习5 选择题 选择题 1&#xff0c;下面代码的结果是&#xff1a;( ) #include <stdio.h> #include <string.h> int main() {char arr[] { b, i, t };printf("%d\n", strlen(arr));return 0; }A.3 B.4 C.随机值 D.5 &#x1f4af;答案解析&#…

【产品文档】团队介绍PPT模板

今天和大家免费分享团队介绍的PPT模板。团队介绍是向他人展示团队的实力、专业性和能力的重要方式。通过一个有力的团队介绍&#xff0c;您可以突出团队的成员、经验、技能和取得的成就&#xff0c;从而增加信任、吸引合作伙伴、客户或投资者的兴趣 【模板预览】 动态演示效果…

R语言画样本不均衡组的箱线图

# 导入 ggplot2 包 library(ggplot2)# 示例数据框&#xff0c;包含数值数据和分组信息 data <- data.frame(Group c(rep("Group A",10), rep("Group B",15),rep("Group C",20)),Value c(rnorm(10, mean 10, sd 2),rnorm(15, mean 15, sd…