基于Elasticsearch + Fluentd + Kibana(EFK)搭建日志收集管理系统

目录

1、EFK简介

2、EFK框架

2.1、Fluentd系统架构

2.2、Elasticsearch系统架构

2.3、Kibana系统架构

3、Elasticsearch接口

4、EFK在虚拟机中安装步骤

4.1、安装elasticsearch

4.2、安装kibana

4.3、安装fluentd

4.4、进入kibana创建索引

5、Fluentd配置介绍


       Elasticsearch,Fluentd和Kibana(EFK)可以进行收集,索引,搜索和可视化日志数据。Elasticsearch负责数据的存储和索引,Fluentd负责数据的调整、过滤、传输,Kibana负责数据的展示。今天就来详细介绍一下使用Elasticsearch,Fluentd和Kibana搭建日志管理系统的详细过程。

1、EFK简介

      Elasticsearch,Fluentd和Kibana(EFK)可以进行收集,索引,搜索和可视化日志数据。Elasticsearch负责数据的存储和索引,Fluentd负责数据的调整、过滤、传输,Kibana负责数据的展示。

       fluentd实时收集日志,把日志作为JSON stream,可以同时从多台server上收集大量日志,易于安装,有灵活的插件机制和缓冲,支持日志转发。它统一实现了每一环节的数据传输,只需要关注数据处理的逻辑,也不用学习各种API,通过配置就可以实现实时增量数据的流出和流入。

       Elasticsearch提供了一个分布式多用户能力的全文搜索引擎。基于RESTful web接口,且提供持久存储、统计等多项功能。可用于全文搜索、结构化搜索、分析以及将这三者混合使用,通过简单的配置就可以做数据复制和分片,并且,它在NRT(Near Real Time)方面做了一些优化,使得应用在实时性方面有很好的表现。

       Kibana 是一个基于浏览器页面的 ElasticSearch 前端展示工具,内置了各种查询和聚合操作,并拥有图形化展示功能。使用它对日志进行高效地搜索、可视化、分析等各种操作。可以通过各种图表进行高级数据分析及展示。

2、EFK框架

       EFK日志处理系统的流程框架如下所示:

具体的流程为:fluentd进行日志的收集,数据来源可以自己设置为容器日志或者存储在本地文件的日志文件,收集之后发送给Elasticsearch进行统一的管理、搜索等操作,最后kibana将结果展示在web界面上。

       日志的处理流程可以简化为:

当考虑健壮性时,需要复杂配置,如图:

多了一层fluentd,以及备选的点,这样日志收集的过程更加稳定以及可靠。

2.1、Fluentd系统架构

       fluentd系统如下图所示:

fluentd的数据流简单,从数据源获取,进行集中,然后发送到输出的地方,流程:输入input --> 处理filter(不是必须的) --> 输出output

input:读取日志内容。

output:输出,常见的有mongodb,elasticsearch,kafka等,只需安装相关的插件即可。

详细结构如下图所示:

2.2、Elasticsearch系统架构

         Elasticsearch作用:fluentd将过滤后的日志内容发给全文搜索服务ElasticSearch,提供检索功能。Elasticsearch 的rest请求的传递流程如下所示:

用户发起http请求,Elasticsearch 的9200端口接受请求后,传递给对应的RestAction。RestAction做的事情很简单,将rest请求转换为RPC的TransportRequest,然后调用NodeClient,相当于用客户端的方式请求RPC服务,只不过transport层会对本节点的请求特殊处理。

2.3、Kibana系统架构

        Kibana是一个强大的数据展示工具。大多数情况下,不需要开发任何代码,就可以得到一个Dashboard。使用 Kibana 来查询,浏览并且可以与存储在 Elasticsearch indices(索引)中的数据交互。需要做的是:

(1)把数据放到ES中

(2)是在Kibana页面上配置报表模版,或按照规则写一套报表模版。

kibana的工作流程如下:

3、Elasticsearch接口

        多种语言都可以使用 REST API 通过端口 9200 和 Elasticsearch 进行通信,REST请求和应答是典型的JSON(JavaScript对象 符号)格式。通常情况下,一个REST请求包含一个JSON文件,其回复也是一个JSON文件。

一个 Elasticsearch 请求和任何 HTTP 请求一样由若干相同的部件组成:

curl -X<VERB> '<PROTOCOL>://<HOST>:<PORT>/<PATH>?<QUERY_STRING>' -d '<BODY>'。

其中被 < > 标记的部分分别为:

VERB:适当的 HTTP 方法 或 谓词 : GET`、 `POST`、 `PUT`、 `HEAD 或者 `DELETE`。

PROTOCOL:http 或者 https`(如果你在 Elasticsearch 前面有一个 `https 代理)。

HOST:Elasticsearch 集群中任意节点的主机名,或者用 localhost 代表本地机器上的节点。

PORT:运行 Elasticsearch HTTP 服务的端口号,默认是 9200。

PATH:API 的终端路径(例如 _count 将返回集群中文档数量)。Path 可能包含多个组件,例如:_cluster/stats 和 _nodes/stats/jvm。

QUERY_STRING:任意可选的查询字符串参数 (例如 ?pretty 将格式化地输出 JSON 返回值,使其更容易阅读)。

BODY:一个 JSON 格式的请求体 (如果请求需要的话)。

GET 可以用来检索文档,同样的,可以使用 DELETE 命令来删除文档,以及使用 HEAD 指令来检查文档是否存在。如果想更新已存在的文档,只需再次 PUT。

       在请求的查询串参数中加上 pretty 参数,这将会调用 Elasticsearch 的 pretty-print 功能,该功能 使得 JSON 响应体更加可读。但是, _source 字段不能被格式化打印出来。相反,我们得到的 _source 字段中的 JSON 串,刚好是和我们传给它的一样。例如:

curl -XGET http://localhost:9200/website/blog/123 -d ‘{...}’

一个查询语句的典型结构:

curl -XGET http://localhost:9200/search -d ‘

{

    QUERY_NAME: {

        ARGUMENT: VALUE,

        ARGUMENT: VALUE,...

    }

} ‘

要启用表头,添加 ?v 参数即可。

       Elasticsearch集群个数:应该始终被配置为 master 候选节点的法定个数(大多数个)。法定个数就是 ( master 候选节点个数 / 2) + 1。Elasticsearch 自己会输出很多日志,都放在 ES_HOME/logs 目录下。默认的日志记录等级是 INFO。

4、EFK在虚拟机中安装步骤

4.1、安装elasticsearch

        首先,安装JDK或者openJDK(这里以openJDK为例),然后安装elasticsearch,最后启动elasticsearch:

[root@elk elk]# yum install java-1.8.0-openjdk -y[root@elk elk]# wget -c https://download.elastic.co/elasticsearch/release/org/elasticsearch/distribution/rpm/elasticsearch/2.3.3/elasticsearch-2.3.3.rpm[root@elk elk]# yum localinstall elasticsearch-2.3.3.rpm –y[root@elk elk]# systemctl daemon-reload[root@elk elk]# systemctl enable elasticsearch[root@elk elk]# systemctl start elasticsearch

修改防火墙,开放9200和9300端口:

[root@elk elk]# firewall-cmd --permanent --add-port={9200/tcp,9300/tcp}[root@elk elk]# firewall-cmd –reload

4.2、安装kibana

[root@elk elk]# wget https://download.elastic.co/kibana/kibana/kibana-4.5.1-1.x86_64.rpm[root@elk elk]# yum localinstall kibana-4.5.1-1.x86_64.rpm –y[root@elk elk]# systemctl enable kibana[root@elk elk]# systemctl start kibana

修改防火墙,对外开放tcp/5601:

[root@elk elk]# firewall-cmd --permanent --add-port=5601/tcp[root@elk elk]# firewall-cmd --reload

打开浏览器测试访问kibana的首页http://localhost:5601/

4.3、安装fluentd

        安装前查看当前最大打开文件数:

$ ulimit -n

如果查看到的是1024,那么这个数值是不足的,则需要修改配置文件提高数值

vi /etc/security/limits.conf

设置值如下:

root soft nofile 65536

root hard nofile 65536

* soft nofile 65536

* hard nofile 65536

然后重启系统。

4.3.1、安装fluentd

        执行如下命令(命令将会自动安装td-agent,td-agent即为fluentd):

$ curl -L https://toolbelt.treasuredata.com/sh/install-redhat-td-agent2.sh | sh

启动td-agent:

$ /etc/init.d/td-agent start$ /etc/init.d/td-agent status

或者

$ systemctl start td-agent$ systemctl status td-agent

        简单demo测试HTTP logs:

curl -X POST -d 'json={"json":"message"}' http://localhost:8888/debug.test

安装必要的插件:

$ /usr/sbin/td-agent-gem install fluent-plugin-elasticsearch$ /usr/sbin/td-agent-gem install fluent-plugin-typecast$ /usr/sbin/td-agent-gem install fluent-plugin-secure-forward$ systemctl restart td-agent

如果上面直接安装不了,则要gem插件(安装rubygems)。

4.3.2、配置td-agent

        使docker生成的日志输出到elasticsearch,修改td-agent的配置

$ vi /etc/td-agent/td-agent.conf

修改内容为如下(这里没有填写端口,默认使用9200端口)

<source>

  @type forward

  port 24224

  bind 0.0.0.0

</source>

<match alpine:**>

  @type elasticsearch

  logstash_format true

  flush_interval 10s # for testing

  host 127.0.0.1

</match>

       重启td-agent:

$ systemctl restart td-agent

启动docker镜像,这里使用alpine做测试:

docker run --log-driver=fluentd --log-opt tag="{{.ImageName}}/{{.Name}}/{{.ID}}" alpine:3.3 echo "helloWorld"

检查fluentd是否正常转发数据,检查td-agent日志,如果最后出现如下一行,则表明正常连接elasticsearch。/var/log/td-agent/td-agent.log中最后一行如下:

2017-12-26 00:40:37 -0500 [info]: #0 Connection opened to Elasticsearch cluster => {:host=>"127.0.0.1", :port=>9200, :scheme=>"http"}

2017-12-26 01:22:42.071896593 -0500 debug.test: {"json":"message"}

4.3.3、fluentd使用

       td-agent默认将配置收集来自http的日志,并将日志转储到/var/log/td-agent/td-agent.log,如果需要配置fluent接收docker日志,则在/etc/td-agent/td-agent.conf中增加,并重启td-agent,systemctl restart td-agent

<match docker.**>

          type stdout

 </match>

配置docker使用fluent为log-driver,有两种方法,指定特定的容器或者配置docker daemon将所有容器日志均存储到fluent中。

方法1:指定容器

docker run --log-driver=fluentd --log-opt fluentd-address=myhost.local:24224

方法2: 设置全局log-driver

docker daemon --log-driver=fluentd

至此,已经成功将docker的日志交给fluent处理。

4.4、进入kibana创建索引

       访问页面:http://localhost:5601/

点击“create”,即可看到如下设置:

5、Fluentd配置介绍

       配置文件为vi /etc/td-agent/td-agent.conf,配置文件主要由以下指令组成:

1)source  决定输入源.

2)match  决定输出目的地.

3)filter  决定事件处理管道.

4)system  设置系统广泛的配置.

5)label  输出分组和筛选内部路由

6)@include  包括其他文件.

       source: 输入源包括http和forward,http将fluentd转换为http端点以接收传入的http消息,forward将fluentd转换为TCP端点,以接受TCP包。当然,它可以同时出现。每个源指令必须包含一个类型参数,类型参数指定要使用的输入插件。

       match: 告诉fluentd做什么,match指令使用匹配的标记查找事件,并处理它们。最常用的匹配指令是将事件输出到其他系统。Fluentd的标准输出插件包括文件file和转发forward。让我们将这些添加到配置文件中。每个匹配指令必须包含匹配模式和类型参数。只有带有与模式匹配的标记的事件才会被发送到输出目的地. 广泛的匹配模式应该在严格的匹配模式之后定义。

       流程就是source 收集日志,然后由串联的 filter 做流式的处理,最后交给 match 进行分发。同时还可以用 label 将任务分组,用 error 处理异常,用 system 修改运行参数。日志存储的格式,根据源不同,比如源是docker的syslog,格式就是syslog的日志形式按配置修改,主要的格式化配置都在配置文件中的 format 这段配置里,主要采用正则表达式拆分数据到自定义的以 <> 包围起来的属性中。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/55352.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux网络编程:多路I/O转接服务器(select poll epoll)

文章目录&#xff1a; 一&#xff1a;select 1.基础API select函数 思路分析 select优缺点 2.server.c 3.client.c 二&#xff1a;poll 1.基础API poll函数 poll优缺点 read函数返回值 突破1024 文件描述符限制 2.server.c 3.client.c 三&#xff1a;epoll …

Elasticsearch(十三)搜索---搜索匹配功能④--Constant Score查询、Function Score查询

一、前言 之前我们学习了布尔查询&#xff0c;知道了filter查询只在乎查询条件和文档的匹配程度&#xff0c;但不会根据匹配程度对文档进行打分&#xff0c;而对于must、should这两个布尔查询会对文档进行打分&#xff0c;那如果我想在查询的时候同时不去在乎文档的打分&#…

Redis(缓存预热,缓存雪崩,缓存击穿,缓存穿透)

目录 一、缓存预热 二、缓存雪崩 三、缓存击穿 四、缓存穿透 一、缓存预热 开过车的都知道&#xff0c;冬天的时候启动我们的小汽车之后不要直接驾驶&#xff0c;先让车子发动机预热一段时间再启动。缓存预热是一样的道理。 缓存预热就是系统启动前&#xff0c;提前将相关的…

C语言基础之——指针(下)

前言&#xff1a;本篇文章将继续讲解有关指针的剩余基础知识。 学无止境&#xff0c;一起加油叭&#xff01;&#xff01; 目录 一.指针运算 1.指针 - 整数 2.指针的关系运算 3.指针 - 指针 二.指针与数组 三.二级指针 四.指针数组 总结 一.指针运算 指针运算包括以下三…

【TI毫米波雷达笔记】UART串口外设配置及驱动(以IWR6843AOP为例)

【TI毫米波雷达笔记】UART串口外设初始化配置及驱动&#xff08;以IWR6843AOP为例&#xff09; 最基本的工程建立好以后 需要给SOC进行初始化配置 int main (void) {//刷一下内存memset ((void *)L3_RAM_Buf, 0, sizeof(L3_RAM_Buf));int32_t errCode; //存放SOC初…

c#设计模式-创建型模式 之 原型模式

概述 原型模式是一种创建型设计模式&#xff0c;它允许你复制已有对象&#xff0c;而无需使代码依赖它们所属的类。新的对象可以通过原型模式对已有对象进行复制来获得&#xff0c;而不是每次都重新创建。 原型模式包含如下角色&#xff1a; 抽象原型类&#xff1a;规定了具…

AliOS-Things引入

目录 一、简介 1.1 硬件抽象层 1.2 AliOS-Things内核 rhino ​编辑 1.3 AliOS-Things组件 二、如何进行AliOS-Things开发 三、安装环境 安装python pip git 修改pip镜像源 安装aos-cube 一、简介 AliOS-Things是阿里巴巴公司推出的致力于搭建云端一体化LoT软件。AliOS-…

【python】python智能停车场数据分析(代码+数据集)【独一无二】

&#x1f449;博__主&#x1f448;&#xff1a;米码收割机 &#x1f449;技__能&#x1f448;&#xff1a;C/Python语言 &#x1f449;公众号&#x1f448;&#xff1a;测试开发自动化【获取源码商业合作】 &#x1f449;荣__誉&#x1f448;&#xff1a;阿里云博客专家博主、5…

azure data studio SQL扩展插件开发笔记

node.js环境下拉取脚手架 npm install -g yo generator-azuredatastudio yo azuredatastudio 改代码 运行 调试扩展&#xff0c;在visual studio code中安装插件即可 然后visual studio code打开进行修改运行即可 image.png 运行后自动打开auzre data studio了&#xff0c; 下面…

spring整合mybatis教程(详细易懂)

一、引言 1、Spring整合MyBatis的目的是&#xff1f; 将两个框架结合起来&#xff0c;以实现更好的开发体验和效果。Spring提供了一种轻量级的容器和依赖注入的机制&#xff0c;可以简化应用程序的配置和管理。而MyBatis是一个优秀的持久层框架&#xff0c;可以方便地进行数据…

C# .aspx网页获取RFID读卡器HTTP协议提交的访问文件Request获得卡号、机号,Response回应驱动读卡器显示响声

本示例使用的设备&#xff1a;RFID网络WIFI无线TCP/UDP/HTTP可编程二次开发读卡器POE供电语音-淘宝网 (taobao.com) 服务端代码&#xff1a; using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.UI; using System.Web.…

快速理解 X server, DISPLAY 与 X11 Forwarding

​ X server X server是X Window System &#xff08;简称X11或者X&#xff09;系统中的显示服务器&#xff08;display server&#xff09;&#xff0c;用于监听X client发送来的图形界面显示请求&#xff0c;并且将图形界面绘制并显示在屏幕&#xff08;screen&#xff09;…

Mybatis查询数据

上一篇我们介绍了在pom文件中引入mybatis依赖&#xff0c;配置了mybatis配置文件&#xff0c;通过读取配置文件创建了会话工厂&#xff0c;使用会话工厂创建会话获取连接对象读取到了数据库的基本信息。 如果您需要对上面的内容进行了解&#xff0c;可以参考Mybatis引入与使用…

再见 Xshell替代工具Tabby

替代Xshell 之前经常使用Xshell来操作Linux虚拟机&#xff0c;基本上是够用了。但是Xshell免费使用只供非商业用途&#xff0c;而且如果你想用FTP来进行文件传输的话&#xff0c;还需单独下载Xftp。 无意中发现了另一款开源的终端工具Tabby&#xff0c;它直接集成了SFTP功能&…

十几款拿来就能用的炫酷表白代码

「作者主页」&#xff1a;士别三日wyx 「作者简介」&#xff1a;CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」&#xff1a;小白零基础《Python入门到精通》 表白代码 1、坐我女朋友好吗&#xff0c;不同意就关机.vbs2、坐我女朋友好吗&…

基于静电放电算法优化的BP神经网络(预测应用) - 附代码

基于静电放电算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码 文章目录 基于静电放电算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码1.数据介绍2.静电放电优化BP神经网络2.1 BP神经网络参数设置2.2 静电放电算法应用 4.测试结果&#xff1a;5…

【mindspore学习】环境配置

本次实验搭配的环境是 CUDA 11.6 CUDNN v8.9.4 TensorRT-8.4.1.5 mindspore 2.1.0。 1、配置 Nvidia 显卡驱动 如果原来的主机已经安装了 nvidia 驱动&#xff0c;为避免版本的冲突&#xff0c;建议先清除掉旧的 nvidia驱动 sudo apt-get --purge remove nvidia* sudo apt…

信息化发展2

信息系统生命周期 1 、软件的生命周期通常包括&#xff1a;可行性分析与项目开发计划、需求分析、概要设计、详细设计、编码、测试、维护等阶段。 2 、信息系统的生命周期可以简化为&#xff1a;系统规划&#xff08;可行性分析与项目开发计划&#xff09;&#xff0c;系统分析…

Unity 之 transform.rotate() 实现旋转

文章目录 详细介绍默认情况下&#xff0c;以局部坐标 详细介绍 在Unity中&#xff0c;Transform.Rotate() 是一个用于在物体上进行旋转的函数。它可以用来在局部坐标系下对物体进行旋转&#xff0c;也可以在世界坐标系下进行旋转。下面是关于 Transform.Rotate() 的详细介绍&a…

2. 使用IDEA创建Spring Boot Hello项目并管理依赖——Maven入门指南

前言&#xff1a;本文将介绍如何使用IDEA创建一个Spring Boot Hello项目&#xff0c;并通过Maven来管理项目的依赖。我们从项目的创建到代码的编写&#xff0c;再到项目的构建和运行&#xff0c;一步步演示了整个过程。 &#x1f680; 作者简介&#xff1a;作为某云服务提供商的…