回归预测 | MATLAB实现SSA-ELM麻雀搜索算法优化极限学习机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现SSA-ELM麻雀搜索算法优化极限学习机多输入单输出回归预测(多指标,多图)

目录

    • 回归预测 | MATLAB实现SSA-ELM麻雀搜索算法优化极限学习机多输入单输出回归预测(多指标,多图)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

1
2
3

基本介绍

回归预测 | MATLAB实现SSA-ELM麻雀搜索算法优化极限学习机多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。
麻雀搜索算法(Sparrow Search Algorithm)是一种基于自然界麻雀觅食行为的启发式优化算法,用于解决优化问题。而极限学习机(Extreme Learning Machine,简称ELM)是一种机器学习算法,用于解决分类和回归问题。首先,需要明确你要优化的目标函数。在极限学习机中,通常会使用某种损失函数来衡量预测结果与真实结果之间的差异。你可以将这个损失函数作为目标函数,通过麻雀搜索算法来最小化或最大化这个目标函数。极限学习机中有一些参数需要进行调优,例如隐层神经元的数量、输入层与隐层之间的连接权重等。你可以将这些参数作为优化的变量,在搜索过程中不断调整它们的取值,以找到最优的参数组合。麻雀搜索算法的核心是模拟麻雀觅食的行为,这包括探索和利用两个方面。你可以设计一种策略,使得搜索过程中既能进行全局的探索,又能尽快收敛到更优的解。例如,可以引入一定的随机性来增加搜索的多样性,或者使用启发式的方法来指导搜索方向。在使用麻雀搜索算法优化极限学习机时,需要对算法进行评估和调整。可以通过与其他优化算法进行比较,或者在不同的测试函数上进行实验,来评估算法的性能。根据评估结果,对算法的参数或策略进行调整,以提高算法的效果。

程序设计

  • 完整源码和数据获取方式:私信回复SSA-ELM麻雀搜索算法优化极限学习机多输入单输出回归预测(多指标,多图)
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('data.xlsx');%%  划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/55323.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UnitTest笔记: 拓展库DDT的使用

DDT (Data-Drivers- Tests) 允许使用不同的测试数据运行同一个测试用例,展示为不同的测试用例。 第一步: pip安装 ddt 第二步: 创建test_baidu_ddt.py 1. 测试类要使用ddt 修饰 2. 不同形式的参数化: 列表,字典&a…

数据隐私与安全在大数据时代的挑战与应对

文章目录 数据隐私的挑战数据安全的挑战应对策略和方法1. 合规和监管2. 加密技术3. 匿名化和脱敏4. 安全意识培训5. 隐私保护技术 结论 🎈个人主页:程序员 小侯 🎐CSDN新晋作者 🎉欢迎 👍点赞✍评论⭐收藏 ✨收录专栏&…

糟改押ong韵诗词,末三字改qiao ben zhong

题目给出诗词行的汉语拼音,糟改诗词押ong诗词行末三字“敲笨钟“。 (本笔记适合初通 Python 的 coder 翻阅) 【学习的细节是欢悦的历程】 Python 官网:https://www.python.org/ Free:大咖免费“圣经”教程《 python 完全自学教程》&#xff…

OpenCV + CLion在windows环境下使用CMake编译, 出现Mutex相关的错误的解决办法

最近在windows下面用cmake编译OpenCV的项目代码,但是一直碰到找不到mutex的问题,百思不得其解, Executing task: g -g -o bin/debug.exe src/main.cppC:\MinGW\lib\opencv\build\include/opencv2/core/utility.hpp:697:14: error: recursive_mutex in namespace st…

uniapp返回上一页并刷新

在uniapp中,经常会有返回上一页的情况,官方提供有 uni.navigateBack 这个api来实现效果,但是此方法返回到上一页之后页面并不会更新(刷新)。 例如有这样一个场景:从地址列表页点击添加按钮进入添加地址页面…

MySQL详细安装与配置

免安装版的Mysql MySQL关是一种关系数据库管理系统,所使用的 SQL 语言是用于访问数据库的最常用的 标准化语言,其特点为体积小、速度快、总体拥有成本低,尤其是开放源码这一特点,在 Web 应用方面 MySQL 是最好的 RDBMS(Relation…

带你启用window10专业版系统自带的远程桌面

启用window10专业版系统自带的远程桌面 文章目录 启用window10专业版系统自带的远程桌面前言1.找到远程桌面的开关2. 找到“应用”项目3. 打开需要远程操作的电脑远程桌面功能 总结 前言 Windows操作系统作为应用最广泛的个人电脑操作系统,在我们身边几乎随处可见。…

【应用层】网络基础 -- HTTP协议

再谈协议HTTP协议认识URLurlencode和urldecodeHTTP协议格式HTTP的方法HTTP的状态码HTTP常见HeaderHTTP周边会话保持 再谈协议 协议是一种 “约定”. socket api的接口,在读写数据时,都是按 “字符串” 的方式来发送接收的(tcp是以字节流的方式发送的&am…

浏览器的事件循环

其实在我们电脑的操作系统中,每一个运行的程序都会由自己的进程(可能是一个,也可能有多个),浏览器就是一个程序,它的运行在操作系统中,拥有一组自己的进程(主进程,渲染进…

Python3 字符串

Python3 字符串 字符串是 Python 中最常用的数据类型。我们可以使用引号( 或 " )来创建字符串。 创建字符串很简单,只要为变量分配一个值即可。例如: var1 Hello World! var2 "Runoob" Python 访问字符串中的值 Python 不支持单字…

树莓派4B上安装Gitlab

参考连接: 树莓派上使用 GitLab 搭建专业 Git 服务 | 树莓派实验室 gitlab reconfigure 卡住 ruby_block[wait for redis service socket] action run_芹菜学长的博客-CSDN博客 以及用到了讯飞星火 系统版本信息 1.进入 giblab安装页面gitlab/gitlab-ce - Instal…

【深入探索Docker】:开启容器化时代的技术奇迹

深入探索Docker 深入探索Docker:开启容器化时代的技术奇迹前言1. 容器化:实现快速部署和可移植性2. 虚拟化:提高安全性和可靠性3. 映像:打包应用及依赖项的模板4. 网络管理:连接容器和主机5. 持久化数据:保…

软考:中级软件设计师:无线网,网络接入技术,ipv6

软考:中级软件设计师:无线网 提示:系列被面试官问的问题,我自己当时不会,所以下来自己复盘一下,认真学习和总结,以应对未来更多的可能性 关于互联网大厂的笔试面试,都是需要细心准备的 &#x…

Vue:插槽,与自定义事件

1.插槽slot <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>Title</title> </head> <body> <div id"app"><!-- <p>列表书籍</p>--> <!-- …

重新认识Android中的线程

线程的几种创建方式 new Thread&#xff1a;可复写Thread#run方法。也可以传递Runnable对象&#xff0c;更加灵活。缺点&#xff1a;缺乏统一管理&#xff0c;可能无限制新建线程&#xff0c;相互之间竞争&#xff0c;及可能占用过多系统的资源导致死机或oom。 new Thread(new…

什么是 API ?

一、API 的定义&#xff1a;数据共享模式定义 4 大种类 作为互联网从业人员&#xff0c;API 这个词我耳朵都听起茧子了&#xff0c;那么 API 究竟是什么呢&#xff1f; API 即应用程序接口&#xff08;API&#xff1a;Application Program Interface&#xff09;&#xff0c;…

Linux(基础IO、文件权限、Makefile)

目录 1、man 手册 1.1 汉化 1.2 具体使用 2、文件权限 2.1 权限理解 2.2 文件详细信息查询 2.3 权限更改 3、常用函数接口 3.1 open 3.2 read 3.3 write 3.4 close 3.5 函数使用示例 4、make与Makefile 4.1 make 与 Makefile区别 4.2 Makefile的编写 5、vim简…

阿里云服务器搭建FRP实现内网穿透-P2P

前言 在了解frp - p2p之前&#xff0c;请先了解阿里云服务器搭建FRP实现内网穿透-转发: 文章地址 1、什么是frp - p2p frp&#xff08;Fast Reverse Proxy&#xff09;是一个开源的反向代理工具&#xff0c;它提供了多种功能&#xff0c;包括端口映射、流量转发和内网穿透等。…

归并排序之从微观看递归

前言 这次&#xff0c;并不是具体讨论归并排序算法&#xff0c;而是利用归并排序算法&#xff0c;探讨一下递归。归并排序的特点在于连续使用了两次递归调用&#xff0c;这次我们将从微观上观察递归全过程&#xff0c;从本质上理解递归&#xff0c;如果能看完&#xff0c;你一…

Wlan——STA上线流程与802.11MAC帧讲解以及报文转发路径

目录 802.11MAC帧基本概念 802.11帧结构 802.11MAC帧的分类 管理帧 控制帧 数据帧 STA接入无线网络流程 信号扫描—管理帧 链路认证—管理帧 用户关联—管理帧 用户上线 不同802.11帧的转发路径 802.11MAC帧基本概念 802.11协议在802家族中的角色位置 其中802.3标…