归并排序之从微观看递归

前言

这次,并不是具体讨论归并排序算法,而是利用归并排序算法,探讨一下递归。归并排序的特点在于连续使用了两次递归调用,这次我们将从微观上观察递归全过程,从本质上理解递归,如果能看完,你一定能变得更强!

代码

先直接上代码吧!

using System.CodeDom.Compiler;int _1 = 0;
int _2 = 0;void __merge(int[] arr, int left, int mid, int right, string flag)
{ Console.WriteLine($"__merge_{flag}: left={left+1}, mid={mid + 1}, right={right + 1}");int[] copy = new int[right - left + 1];//copy arr[left,right] to copy[]for (int ii = left; ii <= right; ii++){copy[ii - left] = arr[ii];}int i = left;int j = mid + 1;for (int k = left; k <= right; k++){if (i > mid){arr[k] = copy[j-left];j++;}else if (j > right){arr[k] = copy[i - left];i++;}else if (copy[i - left] < copy[j - left]){arr[k] = copy[i - left];i++;}else{arr[k] = copy[j - left];j++;}}
}void __merge_sort(int[] arr, int left, int right, string flag)
{if (left >= right)return;if (flag.Contains("1")){_1 += 1;}if (flag.Contains("2")){_2 += 1;}int mid = (left + right) / 2;Console.WriteLine($"{flag}, left={left+1}, mid={mid+1}, right={right + 1}");__merge_sort(arr, left, mid, "第1个merge_sort");__merge_sort(arr, mid + 1, right, "第2个merge_sort");__merge(arr, left, mid, right, flag);
}void merge_sort(int[] arr)
{__merge_sort(arr, 0, arr.Length - 1, "第0个merge_sort");
}int[] arr = { 1, 3, 5, 7, 8, 2, 4, 6};
merge_sort(arr);Console.WriteLine($"_1:{_1}||_2:{_2}");
foreach (var item in arr)
{Console.Write(item + " ");
}Console.ReadLine();

递归分析

这段代码,特殊的地方在于,它使用了两次递归:

_1 和 _2 记录了 第一个和第二个递归的调用次数(和算法逻辑无关),这里增加的flag参数也主要是为了分析递归的过程。

第一个 __merge_sort 递归 的作用主要是将左边的一个数组不断的进行二分。
第二个 __merge_sort 递归 的作用主要是将右边的一个数组不断的进行二分。

merge将二分的数组按照大小顺序合二为一!

这个算法实现的难度,在于递归的构造和数组边界的把握。

宏观上看

void __merge_sort(int[] arr, int left, int right)
{int mid = (left + right) / 2;__merge_sort(arr, left, mid);__merge_sort(arr, mid + 1, right);__merge(arr, left, mid, right, flag);
}

过程就是,通过__merge_sort的递归,将数组二分,然后再将二分的数组归并。
__merge进行归并的前提是,两个即将归并的数组为已经排好序的数组!
但是,如果我们二分的到单个数字的时候,一个数字就是一个数组,这个数字也可以看成是
有序的数组。
在这里插入图片描述
所以,当二分到”极致的“时候,就满足了__merge的前提。

二分完成之后,以下就Merge的工作:
Merge过程
看到这张图,其实很容易联想到递归算法,但是如何构造递归函数呢?有点像:
要把大象装冰箱总共分几步?这是宏观上的看到的:
1 第一步分左边: __merge_sort(arr, left, mid);
2 第二步分右边: __merge_sort(arr, mid + 1, right);
3 第三步整合到一起: __merge(arr, left, mid, right, flag);

微观上看

我们先从微观上从本质上,看看整个递归过程是这么执行的(请结合下面两张图观看):
在这里插入图片描述在这里插入图片描述
这个是程序的执行结果,第0个 表示最外层的__merge_sort被调用。
此时最左边的是1,中间为4,最右是8.
然后__merge_sort一个递归调用触发,第一个__merge_sort负责左边。
所以是:最左边的是1,中间为2,最右是4. 此时并没有满足递归退出的条件,
所以继续调用第一个__merge_sort。此时继续负责左边(注意是1 2 3 4 的左边)。
所以就有了1 1 2 ,那么很明显下次递归的时候,左边会等于右边(left >= right),所以下次就会满足递归退出的条件。

下面一段是重点:

所以下一次,开始了第二个递归的调用!他负责右边的二分。这里可能会有人觉得奇怪,不是负责右边的调用吗?怎么打印的是3 3 4 ?这是左边啊!
那我是这么理解的,递归是有层级划分的,每递归一层就像下了一层楼梯 , 每次递归返回,就是上了一层台阶 刚刚我们退出时候,其实是处于二分 1 2 3 4 这层阶梯的,所以此时,在整个层级,需要二分的是 1 2 3 4 的右边!所以二分的是3 3 4。

此时,该层的__merge_sort也要返回到上一层了。
此时打印的是 5 6 8,直接分的就是 右边的 5 6 7 8,这是因为上一层的左边的 1 2 3 4 已经在上一次的递归中已经被分过了!(递归每一层都有自己的记忆,其实就是每一层的参数都压到栈里进行的保存)此时已经到了递归的最上层了,而且第一层的左右两边都分完了。
接下来开始,是继续往下一层递归,左边的1 2 3 4 已经二分完毕,所以是右边的 5 6 7 8,
而 5 6 7 8 也已经被 分成了 56 | 78。 所以,又是 第一个 __merge_sort 开始二分左边的 56了。
所以此时打印的是 5 5 6,最后是 第二个将右边的分为 7 7 8. 整个二分的过程就结束了。

要注意的是,两个__merge_sort始终是处于用一个层级的,当第一个__merge_sort下个几个楼梯后,其实第二个也会下同样多个阶梯。(接下来还会进一步的再次说明这一点)

合并的部分

接下来,我们来单独看看,二分之后 __merge这个函数的调用过程:
在这里插入图片描述
合并过程
这个完全是符合预期的:
显示左边的,先合并12,再合并14,接着合并1234
然后是右边的,先合并56,再嗯好吧78,结果合并5678
最后是 148,也就是 12345678整个的合并!

现在,我们结合递归和合并一起看,是怎么样的一个顺序:
在这里插入图片描述
在这里插入图片描述

代码回顾

    int mid = (left + right) / 2;Console.WriteLine($"{flag}, left={left+1}, mid={mid+1}, right={right + 1}");__merge_sort(arr, left, mid);__merge_sort(arr, mid + 1, right);__merge(arr, left, mid, right, flag); } ```

首先是,第一次__merge_sort 三次连续的递归之后,直接就开始了第一次的合并!
这里,可能有人会问:按照函数的调用顺序,此时不应该执行,第二个__merge_sort吗?这么直接调到了
__merge函数了?第二个__merge_sort不会执行吗?

这里,我再次强调层级的问题,现在已经递归到最后一个层级了,此时left mid right
对应的是 1 1 2,其实就是对 12 进行二分,此时 对应在这个层级的第二个__merge_sort来说:
__merge_sort(arr, mid + 1, right);
left = mid+1 所以此时,满足了递归的退出条件 left >= right,(其实就是只剩下2了不用你右边在分了!)
所以此时不是第二个__merge_sort没有调用,而是直接退出了。(递归的退出条件也是递归的最重要的核心之一)
所以就执行的__merge,完成12合并(合并的过程其实就排序,可以参考最上面的__merge代码)。

此时,递归已经触底的,开始返回到上一次,上一层的左边已经递归完成(12已经二分,也满足递归退出条件)所以上一层阶梯,就开始右边的递归,将34 二分(注意:这里124左右的划分全部结束啦),二分完成后就返回了,
于是就会执行__merge,完成 34的合并。在这次,__merge结束后,紧接着又是一个
__merge,完成 1 2 4 的合并,也就是说,前面两个__merge_sort都被跳过了!
这是为啥?

这是因为__merge执行完后,此时递归又会上一个层级,在这个层级,其实就是1 2 4的二分,
而 1 2 4 左和右的划分在之前的递归过程中已经结束了,所以直接开始合并了。

此时,还剩下的部分是:
在这里插入图片描述
在这里插入图片描述
合并完成之后,这一次递归也返回了,就到了最上面一层递归了,不过左边的部分已经执行过了,所以是,右边的 5 6 8 的 划分,划分玩之后,从第二个__merge_sort,再次进入递归(下一层楼梯)此时遇到了下一层的第一个__merge_sort。于是就有了 5 5 6,已经触底了所以返回遇到了这一层的第二个__merge_sort就有了 778。到此两个递归都已经触底且都已完成,接下来就都是merge合并了!

这里说一些感想,读到这里你应该体会到了调用两个递归的特点,一开始遇到第一个递归,就会一直递归到最下面一层,然后一层层返回,如下:在这里插入图片描述
在返回的过程中会调用 倒数第二层的第二个__merge_sort, 所以第一个__merge_sort,在递归下楼梯的时候调用,而第二个递归是在上楼梯的时候调用,而当上到最上层的时,刚刚调用完了第二个__merge_sort,又会进入递归的下一层,并碰再次遇到第一个__merge_sort,并再次进入第一层递归!再次触底!

次数问题

接下来再看另外一个问题(和递归无关)如果把数组扩大到10:
在这里插入图片描述
在这里插入图片描述
这次,负责左边的递归运行了5次,而负责右边的只运行了3次。这次左右不平衡了?
会觉得奇怪吗?
这是因为奇偶数的问题,当 数组为8的时候, 8 二分 后是 4+ 4,最后变成 2+2+2+2。
在变成单个之前都是偶数。如果是10,二分就会变成5。5这个数字就会导致二分时,左边的二分次数会更多。
所以只有当个数为 2的N次方的时候,比如 8 16,这样的数组长度时,两次递归的调用次数才会相同!

递归小结

看到,最后你还能回忆起,__merge_sort是如何实现二分的吗?
想不起来,没关系,因为这个过程很隐秘,不过也是递归的设计的关键所在。

void __merge_sort(int[] arr, int left, int right)
{int mid = (left + right) / 2;__merge_sort(arr, left, mid);__merge_sort(arr, mid + 1, right);__merge(arr, left, mid, right, flag);
}

首先,我们要自己设计递归函数,比如传入一个数组,我们的目的是改变该数组内部的元素的顺序,但是,每次考虑的是其中的一个部分。所以我需要一个边界,left和right。
对于整个数组来说,left是0,right是长度-1;
二分之后,每次二分之后,left和right都会发生变化。
每次递归调用都会下一层阶梯,进入下一层,从而导致left和right的再次改变。
能理解 ”进入下一层“ 是理解递归的关键,在一次次递归中,就完成了二分的过程!
我们,可先从宏观上设计思路,再从微观上确保思路的正确。

这篇文章,写了很久,自我感觉良好,不知道各位觉得如何,欢迎评论区反馈~~~

附加,在提供一下完整的python代码吧

之前本来是用python测试,不过还是觉得vs调试C#方便啊:

def __merge(arr, left, mid, right):arr_copy = arr[left:right + 1][:]i = leftj = mid+1for k in range(left, right+1):if i > mid:arr[k] = arr_copy[j-left]j = j + 1elif j > right:arr[k] = arr_copy[i-left]i = i + 1elif arr_copy[i-left] < arr_copy[j-left]:arr[k] = arr_copy[i-left]i = i + 1else:arr[k] = arr_copy[j-left]j = j + 1def __merge_sort(arr, left, right):if left >= right:returnmid = (left + right) // 2print(left, mid, right)__merge_sort(arr, left, mid)__merge_sort(arr, mid + 1, right)__merge(arr, left, mid, right)def merge_sort(arr):__merge_sort(arr, 0, len(arr) - 1)if __name__ == '__main__':arr0 = [1, 3, 5, 7, 9, 2, 4, 6, 8, 10]merge_sort(arr0)print(arr0)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/55293.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Wlan——STA上线流程与802.11MAC帧讲解以及报文转发路径

目录 802.11MAC帧基本概念 802.11帧结构 802.11MAC帧的分类 管理帧 控制帧 数据帧 STA接入无线网络流程 信号扫描—管理帧 链路认证—管理帧 用户关联—管理帧 用户上线 不同802.11帧的转发路径 802.11MAC帧基本概念 802.11协议在802家族中的角色位置 其中802.3标…

【Git Bash】简明从零教学

目录 Git 的作用官网介绍简明概要 Git 下载链接Git 的初始配置配置用户初始化本地库 Git 状态查询Git 工作机制本地工作机制远端工作机制 Git 的本地管理操作add 将修改添加至暂存区commit 将暂存区提交至本地仓库日志查询版本穿梭 Git 分支查看分支创建与切换分支跨分支修改与…

leetcode500. 键盘行

【简单题】 给你一个字符串数组 words &#xff0c;只返回可以使用在 美式键盘 同一行的字母打印出来的单词。键盘如下图所示。 美式键盘 中&#xff1a; 第一行由字符 "qwertyuiop" 组成。第二行由字符 "asdfghjkl" 组成。第三行由字符 "zxcvbnm&…

Nacos集群

需要与Nginx配合。 这是使用三个Nacos来搭建集群。 创建mysql数据库nacos。 配置Nacos 进入nacos的conf目录&#xff0c;修改配置文件cluster.conf.example&#xff0c;重命名为cluster.conf。 在cluster.conf文件的最后加上&#xff1a; #it is ip #example 127.0.0.1:8…

通俗理解DDPM到Stable Diffusion原理

代码1&#xff1a;stabel diffusion 代码库代码2&#xff1a;diffusers 代码库论文&#xff1a;High-Resolution Image Synthesis with Latent Diffusion Models模型权重&#xff1a;runwayml/stable-diffusion-v1-5 文章目录 1. DDPM的通俗理解1.1 DDPM的目的1.2 扩散过程1.3 …

测试框架pytest教程(6)钩子函数hook开发pytest插件

pytest hook 函数也叫钩子函数&#xff0c;pytest 提供了大量的钩子函数&#xff0c;可以在用例的不同生命周期自动调用。 比如&#xff0c;在测试用例收集阶段&#xff0c;可利用 hook 函数修改测试用例名称的编码。 pytest的hook是基于Python的插件系统实现的&#xff0c;使…

Tokenview再度升级:全新Web3开发者APIs数据服务体验!

Tokenview发布全新版本的区块链APIs和数据服务平台&#xff0c;为开发者打造更强大、更便捷的开发体验&#xff01; 此次升级&#xff0c;我们整合了开发者使用习惯以及Tokenview产品优势。我们深知对于开发者来说&#xff0c;时间是非常宝贵的&#xff0c;因此我们努力提供一…

蚂蚁 SOFAServerless 微服务新架构的探索与实践

赵真灵&#xff08;有济&#xff09; 蚂蚁集团技术专家 Serverless 和微服务领域专家曾负责基于 K8s Deployment 的应用发布运维平台建设、K8s 集群的 Node/pod 多级弹性伸缩与产品建设。当前主要负责应用架构演进和 Serverless 相关工作。同时也是 SOFAArk 社区的开发和维护者…

两款开箱即用的Live2d

目录 背景第一款&#xff1a;开箱即用的Live2d在vue项目中使用html页面使用在线预览依赖文件地址配置相关参数成员属性源码 模型下载 第二款&#xff1a;换装模型超多的Live2d在线预览代码示例源码 模型下载 背景 从第一次使用服务器建站已经三年多了&#xff0c;记得那是在2…

【沐风老师】如何在3dMax中将3D物体转化为样条线构成的对象?

在3dMax中如何把三维物体转化为由样条线构成的对象&#xff1f;通常这样的场景会出现在科研绘图或一些艺术创作当中&#xff0c;下面给大家详细讲解一种3dmax三维物体转样条线的方法。 第一部分&#xff1a;用粒子填充3D对象&#xff1a; 1.创建一个三维对象&#xff08;本例…

动物体外受精手术VR模拟仿真培训系统保证学生及标本的安全

奶牛是养殖业主要的资源&#xff0c;因此保证奶牛的健康对养殖业的成功和可持续发展具有重要已用&#xff0c;奶牛有一些常见易发病&#xff0c;一旦处理不当&#xff0c;对奶牛业都会造成较大的经济损失&#xff0c;传统的奶牛手术培训实操难度大、风险高且花费大&#xff0c;…

软件设计师学习笔记6-存储系统

目录 1.层次化存储体系 1.1层次化存储结构 1.2层次化存储结构的分类 2.Cache 2.1概念 2.2映像 2.2.1概念 2.2.2分类 2.2.3不同映像的图解(帮助理解&#xff0c;不考) 3.主存编址方法 3.1计算公式 3.2补充内容 1.层次化存储体系 1.1层次化存储结构 局部性原理是层次…

C++day3(类、this指针、类中的特殊成员函数)

一、Xmind整理&#xff1a; 二、上课笔记整理&#xff1a; 1.类的应用实例 #include <iostream> using namespace std;class Person { private:string name; public:int age;int high;void set_name(string n); //在类内声明函数void show(){cout << "na…

Spring Boot多环境指定yml或者properties

Spring Boot多环境指定yml或者properties 文章目录 Spring Boot多环境指定yml或者properties加载顺序配置指定某个yml 加载顺序 ● application-local.properties ● application.properties ● application-local.yml ● application.yml application.propertes server.port…

RT1050的ADC

文章目录 1 ADC介绍2 ADC框图2.1 外部输入通道2.2 输入电压范围2.3 触发源2.4 时钟源2.5 偏移矫正功能2.5.1 校准 3 单通道中断采集实验3.1 ADC选项3.2 ADC配置3.3 配置用户通道和中断3.4 中断代码 1 ADC介绍 RT1052 有 2 个 ADC&#xff0c;每个 ADC 有 12 位、10 位、8 位可…

使用windeployqt和InstallShield打包发布Qt软件的流程

前言 Qt编译之后需要打包发布&#xff0c;并且发布给用户后需要增加一个安装软件&#xff0c;通过安装软件可以实现Qt软件的安装&#xff1b;用于安装软件的软件有很多&#xff0c;这里主要介绍InstallShield使用的流程&#xff1b; 使用windeployqt打包Qt编译后的程序 Qt程序…

【JavaEE】Spring事务-事务的基本介绍-事务的实现-@Transactional基本介绍和使用

【JavaEE】Spring事务&#xff08;1&#xff09; 文章目录 【JavaEE】Spring事务&#xff08;2&#xff09;1. 为什么要使用事务2. Spring中事务的实现2.1 事务针对哪些操作2.2 MySQL 事务使用2.3 Spring 编程式事务&#xff08;手动挡&#xff09;2.4 Spring 声明式事务&#…

【线程池】ThreadPoolExecutor的使用示例

文章目录 通过ThreadPoolExecutor创建线程池。线程的处理结果如何获取&#xff1f; 通过ThreadPoolExecutor创建线程池。 ThreadPoolExecutor构造方法参数&#xff1a; int corePoolSize //核心线程数量int maximumPoolSize//最大线程数long keepAliveTime//当线程数大于核心…

【无线点对点网络时延分析和可视化】模拟无线点对点网络中的延迟以及物理层和数据链路层之间的相互作用(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

Win解答 | 解决键盘中 字母+空格 导致的输入法弹窗导致的一系列问题

近三个月来&#xff0c;一直都有一个键盘组合键的问题影响我的电脑使用&#xff0c;不管是打字还是打游戏&#xff0c;都会出现按键盘的 字母空格 弹出一个特殊符号的候选框&#xff0c;如下图所示 图片中为 S空格 所出现的弹窗 一个看似方便&#xff0c;实则难受的功能 其实打…